Solve for x
x=20\sqrt{314}\approx 354.400902933
x=-20\sqrt{314}\approx -354.400902933
Graph
Share
Copied to clipboard
3.14x^{2}=394384
Calculate 628 to the power of 2 and get 394384.
x^{2}=\frac{394384}{3.14}
Divide both sides by 3.14.
x^{2}=\frac{39438400}{314}
Expand \frac{394384}{3.14} by multiplying both numerator and the denominator by 100.
x^{2}=125600
Divide 39438400 by 314 to get 125600.
x=20\sqrt{314} x=-20\sqrt{314}
Take the square root of both sides of the equation.
3.14x^{2}=394384
Calculate 628 to the power of 2 and get 394384.
3.14x^{2}-394384=0
Subtract 394384 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 3.14\left(-394384\right)}}{2\times 3.14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3.14 for a, 0 for b, and -394384 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3.14\left(-394384\right)}}{2\times 3.14}
Square 0.
x=\frac{0±\sqrt{-12.56\left(-394384\right)}}{2\times 3.14}
Multiply -4 times 3.14.
x=\frac{0±\sqrt{4953463.04}}{2\times 3.14}
Multiply -12.56 times -394384.
x=\frac{0±\frac{628\sqrt{314}}{5}}{2\times 3.14}
Take the square root of 4953463.04.
x=\frac{0±\frac{628\sqrt{314}}{5}}{6.28}
Multiply 2 times 3.14.
x=20\sqrt{314}
Now solve the equation x=\frac{0±\frac{628\sqrt{314}}{5}}{6.28} when ± is plus.
x=-20\sqrt{314}
Now solve the equation x=\frac{0±\frac{628\sqrt{314}}{5}}{6.28} when ± is minus.
x=20\sqrt{314} x=-20\sqrt{314}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}