Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-10x+21=3
Swap sides so that all variable terms are on the left hand side.
x^{2}-10x+21-3=0
Subtract 3 from both sides.
x^{2}-10x+18=0
Subtract 3 from 21 to get 18.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 18}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-72}}{2}
Multiply -4 times 18.
x=\frac{-\left(-10\right)±\sqrt{28}}{2}
Add 100 to -72.
x=\frac{-\left(-10\right)±2\sqrt{7}}{2}
Take the square root of 28.
x=\frac{10±2\sqrt{7}}{2}
The opposite of -10 is 10.
x=\frac{2\sqrt{7}+10}{2}
Now solve the equation x=\frac{10±2\sqrt{7}}{2} when ± is plus. Add 10 to 2\sqrt{7}.
x=\sqrt{7}+5
Divide 10+2\sqrt{7} by 2.
x=\frac{10-2\sqrt{7}}{2}
Now solve the equation x=\frac{10±2\sqrt{7}}{2} when ± is minus. Subtract 2\sqrt{7} from 10.
x=5-\sqrt{7}
Divide 10-2\sqrt{7} by 2.
x=\sqrt{7}+5 x=5-\sqrt{7}
The equation is now solved.
x^{2}-10x+21=3
Swap sides so that all variable terms are on the left hand side.
x^{2}-10x=3-21
Subtract 21 from both sides.
x^{2}-10x=-18
Subtract 21 from 3 to get -18.
x^{2}-10x+\left(-5\right)^{2}=-18+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-18+25
Square -5.
x^{2}-10x+25=7
Add -18 to 25.
\left(x-5\right)^{2}=7
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x-5=\sqrt{7} x-5=-\sqrt{7}
Simplify.
x=\sqrt{7}+5 x=5-\sqrt{7}
Add 5 to both sides of the equation.