Solve for x
x=-\frac{2y}{3}+4
Solve for y
y=-\frac{3x}{2}+6
Graph
Share
Copied to clipboard
3x-3+2\left(y+1\right)-6=5
Use the distributive property to multiply 3 by x-1.
3x-3+2y+2-6=5
Use the distributive property to multiply 2 by y+1.
3x-1+2y-6=5
Add -3 and 2 to get -1.
3x-7+2y=5
Subtract 6 from -1 to get -7.
3x+2y=5+7
Add 7 to both sides.
3x+2y=12
Add 5 and 7 to get 12.
3x=12-2y
Subtract 2y from both sides.
\frac{3x}{3}=\frac{12-2y}{3}
Divide both sides by 3.
x=\frac{12-2y}{3}
Dividing by 3 undoes the multiplication by 3.
x=-\frac{2y}{3}+4
Divide 12-2y by 3.
3x-3+2\left(y+1\right)-6=5
Use the distributive property to multiply 3 by x-1.
3x-3+2y+2-6=5
Use the distributive property to multiply 2 by y+1.
3x-1+2y-6=5
Add -3 and 2 to get -1.
3x-7+2y=5
Subtract 6 from -1 to get -7.
-7+2y=5-3x
Subtract 3x from both sides.
2y=5-3x+7
Add 7 to both sides.
2y=12-3x
Add 5 and 7 to get 12.
\frac{2y}{2}=\frac{12-3x}{2}
Divide both sides by 2.
y=\frac{12-3x}{2}
Dividing by 2 undoes the multiplication by 2.
y=-\frac{3x}{2}+6
Divide 12-3x by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}