Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x+2\right)\left(x-2\right)=\left(x-4\right)^{2}+8x
Multiply x-4 and x-4 to get \left(x-4\right)^{2}.
\left(3x+6\right)\left(x-2\right)=\left(x-4\right)^{2}+8x
Use the distributive property to multiply 3 by x+2.
3x^{2}-12=\left(x-4\right)^{2}+8x
Use the distributive property to multiply 3x+6 by x-2 and combine like terms.
3x^{2}-12=x^{2}-8x+16+8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
3x^{2}-12=x^{2}+16
Combine -8x and 8x to get 0.
3x^{2}-12-x^{2}=16
Subtract x^{2} from both sides.
2x^{2}-12=16
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}=16+12
Add 12 to both sides.
2x^{2}=28
Add 16 and 12 to get 28.
x^{2}=\frac{28}{2}
Divide both sides by 2.
x^{2}=14
Divide 28 by 2 to get 14.
x=\sqrt{14} x=-\sqrt{14}
Take the square root of both sides of the equation.
3\left(x+2\right)\left(x-2\right)=\left(x-4\right)^{2}+8x
Multiply x-4 and x-4 to get \left(x-4\right)^{2}.
\left(3x+6\right)\left(x-2\right)=\left(x-4\right)^{2}+8x
Use the distributive property to multiply 3 by x+2.
3x^{2}-12=\left(x-4\right)^{2}+8x
Use the distributive property to multiply 3x+6 by x-2 and combine like terms.
3x^{2}-12=x^{2}-8x+16+8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
3x^{2}-12=x^{2}+16
Combine -8x and 8x to get 0.
3x^{2}-12-x^{2}=16
Subtract x^{2} from both sides.
2x^{2}-12=16
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-12-16=0
Subtract 16 from both sides.
2x^{2}-28=0
Subtract 16 from -12 to get -28.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-28\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-28\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-28\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{224}}{2\times 2}
Multiply -8 times -28.
x=\frac{0±4\sqrt{14}}{2\times 2}
Take the square root of 224.
x=\frac{0±4\sqrt{14}}{4}
Multiply 2 times 2.
x=\sqrt{14}
Now solve the equation x=\frac{0±4\sqrt{14}}{4} when ± is plus.
x=-\sqrt{14}
Now solve the equation x=\frac{0±4\sqrt{14}}{4} when ± is minus.
x=\sqrt{14} x=-\sqrt{14}
The equation is now solved.