Solve for x
x = \frac{188}{21} = 8\frac{20}{21} \approx 8.952380952
Graph
Share
Copied to clipboard
15x-36+6\left(8x-96\right)=-48
Use the distributive property to multiply 3 by 5x-12.
15x-36+48x-576=-48
Use the distributive property to multiply 6 by 8x-96.
63x-36-576=-48
Combine 15x and 48x to get 63x.
63x-612=-48
Subtract 576 from -36 to get -612.
63x=-48+612
Add 612 to both sides.
63x=564
Add -48 and 612 to get 564.
x=\frac{564}{63}
Divide both sides by 63.
x=\frac{188}{21}
Reduce the fraction \frac{564}{63} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}