Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x\left(\frac{1}{3}+x\right)=9x-1
Multiply 3 and 3 to get 9.
9x\times \frac{1}{3}+9x^{2}=9x-1
Use the distributive property to multiply 9x by \frac{1}{3}+x.
\frac{9}{3}x+9x^{2}=9x-1
Multiply 9 and \frac{1}{3} to get \frac{9}{3}.
3x+9x^{2}=9x-1
Divide 9 by 3 to get 3.
3x+9x^{2}-9x=-1
Subtract 9x from both sides.
-6x+9x^{2}=-1
Combine 3x and -9x to get -6x.
-6x+9x^{2}+1=0
Add 1 to both sides.
9x^{2}-6x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -6 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2\times 9}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\times 9}
Add 36 to -36.
x=-\frac{-6}{2\times 9}
Take the square root of 0.
x=\frac{6}{2\times 9}
The opposite of -6 is 6.
x=\frac{6}{18}
Multiply 2 times 9.
x=\frac{1}{3}
Reduce the fraction \frac{6}{18} to lowest terms by extracting and canceling out 6.
9x\left(\frac{1}{3}+x\right)=9x-1
Multiply 3 and 3 to get 9.
9x\times \frac{1}{3}+9x^{2}=9x-1
Use the distributive property to multiply 9x by \frac{1}{3}+x.
\frac{9}{3}x+9x^{2}=9x-1
Multiply 9 and \frac{1}{3} to get \frac{9}{3}.
3x+9x^{2}=9x-1
Divide 9 by 3 to get 3.
3x+9x^{2}-9x=-1
Subtract 9x from both sides.
-6x+9x^{2}=-1
Combine 3x and -9x to get -6x.
9x^{2}-6x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}-6x}{9}=-\frac{1}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{6}{9}\right)x=-\frac{1}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{2}{3}x=-\frac{1}{9}
Reduce the fraction \frac{-6}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=0
Add -\frac{1}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=0
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{1}{3}=0 x-\frac{1}{3}=0
Simplify.
x=\frac{1}{3} x=\frac{1}{3}
Add \frac{1}{3} to both sides of the equation.
x=\frac{1}{3}
The equation is now solved. Solutions are the same.