Solve for x
x = \frac{257}{243} = 1\frac{14}{243} \approx 1.057613169
Graph
Share
Copied to clipboard
3\left(3\left(3\left(3\left(27x-24-2\right)-2\right)-2\right)-2\right)-2=127
Use the distributive property to multiply 3 by 9x-8.
3\left(3\left(3\left(3\left(27x-26\right)-2\right)-2\right)-2\right)-2=127
Subtract 2 from -24 to get -26.
3\left(3\left(3\left(81x-78-2\right)-2\right)-2\right)-2=127
Use the distributive property to multiply 3 by 27x-26.
3\left(3\left(3\left(81x-80\right)-2\right)-2\right)-2=127
Subtract 2 from -78 to get -80.
3\left(3\left(243x-240-2\right)-2\right)-2=127
Use the distributive property to multiply 3 by 81x-80.
3\left(3\left(243x-242\right)-2\right)-2=127
Subtract 2 from -240 to get -242.
3\left(729x-726-2\right)-2=127
Use the distributive property to multiply 3 by 243x-242.
3\left(729x-728\right)-2=127
Subtract 2 from -726 to get -728.
2187x-2184-2=127
Use the distributive property to multiply 3 by 729x-728.
2187x-2186=127
Subtract 2 from -2184 to get -2186.
2187x=127+2186
Add 2186 to both sides.
2187x=2313
Add 127 and 2186 to get 2313.
x=\frac{2313}{2187}
Divide both sides by 2187.
x=\frac{257}{243}
Reduce the fraction \frac{2313}{2187} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}