Solve for x (complex solution)
x=\frac{1+\sqrt{11}i}{2}\approx 0.5+1.658312395i
x=\frac{-\sqrt{11}i+1}{2}\approx 0.5-1.658312395i
Graph
Share
Copied to clipboard
6x-9-3\left(3+2x^{2}\right)=0
Use the distributive property to multiply 3 by 2x-3.
6x-9-9-6x^{2}=0
Use the distributive property to multiply -3 by 3+2x^{2}.
6x-18-6x^{2}=0
Subtract 9 from -9 to get -18.
-6x^{2}+6x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)\left(-18\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 6 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-6\right)\left(-18\right)}}{2\left(-6\right)}
Square 6.
x=\frac{-6±\sqrt{36+24\left(-18\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-6±\sqrt{36-432}}{2\left(-6\right)}
Multiply 24 times -18.
x=\frac{-6±\sqrt{-396}}{2\left(-6\right)}
Add 36 to -432.
x=\frac{-6±6\sqrt{11}i}{2\left(-6\right)}
Take the square root of -396.
x=\frac{-6±6\sqrt{11}i}{-12}
Multiply 2 times -6.
x=\frac{-6+6\sqrt{11}i}{-12}
Now solve the equation x=\frac{-6±6\sqrt{11}i}{-12} when ± is plus. Add -6 to 6i\sqrt{11}.
x=\frac{-\sqrt{11}i+1}{2}
Divide -6+6i\sqrt{11} by -12.
x=\frac{-6\sqrt{11}i-6}{-12}
Now solve the equation x=\frac{-6±6\sqrt{11}i}{-12} when ± is minus. Subtract 6i\sqrt{11} from -6.
x=\frac{1+\sqrt{11}i}{2}
Divide -6-6i\sqrt{11} by -12.
x=\frac{-\sqrt{11}i+1}{2} x=\frac{1+\sqrt{11}i}{2}
The equation is now solved.
6x-9-3\left(3+2x^{2}\right)=0
Use the distributive property to multiply 3 by 2x-3.
6x-9-9-6x^{2}=0
Use the distributive property to multiply -3 by 3+2x^{2}.
6x-18-6x^{2}=0
Subtract 9 from -9 to get -18.
6x-6x^{2}=18
Add 18 to both sides. Anything plus zero gives itself.
-6x^{2}+6x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}+6x}{-6}=\frac{18}{-6}
Divide both sides by -6.
x^{2}+\frac{6}{-6}x=\frac{18}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-x=\frac{18}{-6}
Divide 6 by -6.
x^{2}-x=-3
Divide 18 by -6.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-3+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-3+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{11}{4}
Add -3 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{11}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{11}i}{2} x-\frac{1}{2}=-\frac{\sqrt{11}i}{2}
Simplify.
x=\frac{1+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i+1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}