Solve for x
x=\frac{\sqrt{481}-25}{36}\approx -0.085230217
x=\frac{-\sqrt{481}-25}{36}\approx -1.303658672
Graph
Share
Copied to clipboard
18\left(2x+3\right)x=4x-4
Multiply 3 and 6 to get 18.
\left(36x+54\right)x=4x-4
Use the distributive property to multiply 18 by 2x+3.
36x^{2}+54x=4x-4
Use the distributive property to multiply 36x+54 by x.
36x^{2}+54x-4x=-4
Subtract 4x from both sides.
36x^{2}+50x=-4
Combine 54x and -4x to get 50x.
36x^{2}+50x+4=0
Add 4 to both sides.
x=\frac{-50±\sqrt{50^{2}-4\times 36\times 4}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 50 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-50±\sqrt{2500-4\times 36\times 4}}{2\times 36}
Square 50.
x=\frac{-50±\sqrt{2500-144\times 4}}{2\times 36}
Multiply -4 times 36.
x=\frac{-50±\sqrt{2500-576}}{2\times 36}
Multiply -144 times 4.
x=\frac{-50±\sqrt{1924}}{2\times 36}
Add 2500 to -576.
x=\frac{-50±2\sqrt{481}}{2\times 36}
Take the square root of 1924.
x=\frac{-50±2\sqrt{481}}{72}
Multiply 2 times 36.
x=\frac{2\sqrt{481}-50}{72}
Now solve the equation x=\frac{-50±2\sqrt{481}}{72} when ± is plus. Add -50 to 2\sqrt{481}.
x=\frac{\sqrt{481}-25}{36}
Divide -50+2\sqrt{481} by 72.
x=\frac{-2\sqrt{481}-50}{72}
Now solve the equation x=\frac{-50±2\sqrt{481}}{72} when ± is minus. Subtract 2\sqrt{481} from -50.
x=\frac{-\sqrt{481}-25}{36}
Divide -50-2\sqrt{481} by 72.
x=\frac{\sqrt{481}-25}{36} x=\frac{-\sqrt{481}-25}{36}
The equation is now solved.
18\left(2x+3\right)x=4x-4
Multiply 3 and 6 to get 18.
\left(36x+54\right)x=4x-4
Use the distributive property to multiply 18 by 2x+3.
36x^{2}+54x=4x-4
Use the distributive property to multiply 36x+54 by x.
36x^{2}+54x-4x=-4
Subtract 4x from both sides.
36x^{2}+50x=-4
Combine 54x and -4x to get 50x.
\frac{36x^{2}+50x}{36}=-\frac{4}{36}
Divide both sides by 36.
x^{2}+\frac{50}{36}x=-\frac{4}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}+\frac{25}{18}x=-\frac{4}{36}
Reduce the fraction \frac{50}{36} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{25}{18}x=-\frac{1}{9}
Reduce the fraction \frac{-4}{36} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{25}{18}x+\left(\frac{25}{36}\right)^{2}=-\frac{1}{9}+\left(\frac{25}{36}\right)^{2}
Divide \frac{25}{18}, the coefficient of the x term, by 2 to get \frac{25}{36}. Then add the square of \frac{25}{36} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{25}{18}x+\frac{625}{1296}=-\frac{1}{9}+\frac{625}{1296}
Square \frac{25}{36} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{25}{18}x+\frac{625}{1296}=\frac{481}{1296}
Add -\frac{1}{9} to \frac{625}{1296} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{36}\right)^{2}=\frac{481}{1296}
Factor x^{2}+\frac{25}{18}x+\frac{625}{1296}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{36}\right)^{2}}=\sqrt{\frac{481}{1296}}
Take the square root of both sides of the equation.
x+\frac{25}{36}=\frac{\sqrt{481}}{36} x+\frac{25}{36}=-\frac{\sqrt{481}}{36}
Simplify.
x=\frac{\sqrt{481}-25}{36} x=\frac{-\sqrt{481}-25}{36}
Subtract \frac{25}{36} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}