Solve for x
x=5\sqrt{7}+14\approx 27.228756555
x=14-5\sqrt{7}\approx 0.771243445
Graph
Share
Copied to clipboard
3x^{2}-21=4x\left(x-7\right)
Use the distributive property to multiply 3 by x^{2}-7.
3x^{2}-21=4x^{2}-28x
Use the distributive property to multiply 4x by x-7.
3x^{2}-21-4x^{2}=-28x
Subtract 4x^{2} from both sides.
-x^{2}-21=-28x
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-21+28x=0
Add 28x to both sides.
-x^{2}+28x-21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\left(-1\right)\left(-21\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 28 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-1\right)\left(-21\right)}}{2\left(-1\right)}
Square 28.
x=\frac{-28±\sqrt{784+4\left(-21\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-28±\sqrt{784-84}}{2\left(-1\right)}
Multiply 4 times -21.
x=\frac{-28±\sqrt{700}}{2\left(-1\right)}
Add 784 to -84.
x=\frac{-28±10\sqrt{7}}{2\left(-1\right)}
Take the square root of 700.
x=\frac{-28±10\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{10\sqrt{7}-28}{-2}
Now solve the equation x=\frac{-28±10\sqrt{7}}{-2} when ± is plus. Add -28 to 10\sqrt{7}.
x=14-5\sqrt{7}
Divide -28+10\sqrt{7} by -2.
x=\frac{-10\sqrt{7}-28}{-2}
Now solve the equation x=\frac{-28±10\sqrt{7}}{-2} when ± is minus. Subtract 10\sqrt{7} from -28.
x=5\sqrt{7}+14
Divide -28-10\sqrt{7} by -2.
x=14-5\sqrt{7} x=5\sqrt{7}+14
The equation is now solved.
3x^{2}-21=4x\left(x-7\right)
Use the distributive property to multiply 3 by x^{2}-7.
3x^{2}-21=4x^{2}-28x
Use the distributive property to multiply 4x by x-7.
3x^{2}-21-4x^{2}=-28x
Subtract 4x^{2} from both sides.
-x^{2}-21=-28x
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-21+28x=0
Add 28x to both sides.
-x^{2}+28x=21
Add 21 to both sides. Anything plus zero gives itself.
\frac{-x^{2}+28x}{-1}=\frac{21}{-1}
Divide both sides by -1.
x^{2}+\frac{28}{-1}x=\frac{21}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-28x=\frac{21}{-1}
Divide 28 by -1.
x^{2}-28x=-21
Divide 21 by -1.
x^{2}-28x+\left(-14\right)^{2}=-21+\left(-14\right)^{2}
Divide -28, the coefficient of the x term, by 2 to get -14. Then add the square of -14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-28x+196=-21+196
Square -14.
x^{2}-28x+196=175
Add -21 to 196.
\left(x-14\right)^{2}=175
Factor x^{2}-28x+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-14\right)^{2}}=\sqrt{175}
Take the square root of both sides of the equation.
x-14=5\sqrt{7} x-14=-5\sqrt{7}
Simplify.
x=5\sqrt{7}+14 x=14-5\sqrt{7}
Add 14 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}