Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x+2\right)\left(x-3\right)+168\left(x-2\right)\left(x-3\right)-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x-2,x+2,x^{2}-4.
\left(3x+6\right)\left(x-3\right)+168\left(x-2\right)\left(x-3\right)-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 3 by x+2.
3x^{2}-3x-18+168\left(x-2\right)\left(x-3\right)-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 3x+6 by x-3 and combine like terms.
3x^{2}-3x-18+\left(168x-336\right)\left(x-3\right)-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 168 by x-2.
3x^{2}-3x-18+168x^{2}-840x+1008-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 168x-336 by x-3 and combine like terms.
171x^{2}-3x-18-840x+1008-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Combine 3x^{2} and 168x^{2} to get 171x^{2}.
171x^{2}-843x-18+1008-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Combine -3x and -840x to get -843x.
171x^{2}-843x+990-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Add -18 and 1008 to get 990.
171x^{2}-843x+990-\left(46x^{2}-184+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 46 by x^{2}-4.
171x^{2}-843x+990-\left(46x^{2}-193+x\right)=0\times 0\left(x-2\right)\left(x+2\right)
Subtract 9 from -184 to get -193.
171x^{2}-843x+990-46x^{2}+193-x=0\times 0\left(x-2\right)\left(x+2\right)
To find the opposite of 46x^{2}-193+x, find the opposite of each term.
125x^{2}-843x+990+193-x=0\times 0\left(x-2\right)\left(x+2\right)
Combine 171x^{2} and -46x^{2} to get 125x^{2}.
125x^{2}-843x+1183-x=0\times 0\left(x-2\right)\left(x+2\right)
Add 990 and 193 to get 1183.
125x^{2}-844x+1183=0\times 0\left(x-2\right)\left(x+2\right)
Combine -843x and -x to get -844x.
125x^{2}-844x+1183=0\left(x-2\right)\left(x+2\right)
Multiply 0 and 0 to get 0.
125x^{2}-844x+1183=0
Anything times zero gives zero.
x=\frac{-\left(-844\right)±\sqrt{\left(-844\right)^{2}-4\times 125\times 1183}}{2\times 125}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 125 for a, -844 for b, and 1183 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-844\right)±\sqrt{712336-4\times 125\times 1183}}{2\times 125}
Square -844.
x=\frac{-\left(-844\right)±\sqrt{712336-500\times 1183}}{2\times 125}
Multiply -4 times 125.
x=\frac{-\left(-844\right)±\sqrt{712336-591500}}{2\times 125}
Multiply -500 times 1183.
x=\frac{-\left(-844\right)±\sqrt{120836}}{2\times 125}
Add 712336 to -591500.
x=\frac{-\left(-844\right)±2\sqrt{30209}}{2\times 125}
Take the square root of 120836.
x=\frac{844±2\sqrt{30209}}{2\times 125}
The opposite of -844 is 844.
x=\frac{844±2\sqrt{30209}}{250}
Multiply 2 times 125.
x=\frac{2\sqrt{30209}+844}{250}
Now solve the equation x=\frac{844±2\sqrt{30209}}{250} when ± is plus. Add 844 to 2\sqrt{30209}.
x=\frac{\sqrt{30209}+422}{125}
Divide 844+2\sqrt{30209} by 250.
x=\frac{844-2\sqrt{30209}}{250}
Now solve the equation x=\frac{844±2\sqrt{30209}}{250} when ± is minus. Subtract 2\sqrt{30209} from 844.
x=\frac{422-\sqrt{30209}}{125}
Divide 844-2\sqrt{30209} by 250.
x=\frac{\sqrt{30209}+422}{125} x=\frac{422-\sqrt{30209}}{125}
The equation is now solved.
3\left(x+2\right)\left(x-3\right)+168\left(x-2\right)\left(x-3\right)-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x-2,x+2,x^{2}-4.
\left(3x+6\right)\left(x-3\right)+168\left(x-2\right)\left(x-3\right)-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 3 by x+2.
3x^{2}-3x-18+168\left(x-2\right)\left(x-3\right)-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 3x+6 by x-3 and combine like terms.
3x^{2}-3x-18+\left(168x-336\right)\left(x-3\right)-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 168 by x-2.
3x^{2}-3x-18+168x^{2}-840x+1008-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 168x-336 by x-3 and combine like terms.
171x^{2}-3x-18-840x+1008-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Combine 3x^{2} and 168x^{2} to get 171x^{2}.
171x^{2}-843x-18+1008-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Combine -3x and -840x to get -843x.
171x^{2}-843x+990-\left(46\left(x^{2}-4\right)+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Add -18 and 1008 to get 990.
171x^{2}-843x+990-\left(46x^{2}-184+x-9\right)=0\times 0\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 46 by x^{2}-4.
171x^{2}-843x+990-\left(46x^{2}-193+x\right)=0\times 0\left(x-2\right)\left(x+2\right)
Subtract 9 from -184 to get -193.
171x^{2}-843x+990-46x^{2}+193-x=0\times 0\left(x-2\right)\left(x+2\right)
To find the opposite of 46x^{2}-193+x, find the opposite of each term.
125x^{2}-843x+990+193-x=0\times 0\left(x-2\right)\left(x+2\right)
Combine 171x^{2} and -46x^{2} to get 125x^{2}.
125x^{2}-843x+1183-x=0\times 0\left(x-2\right)\left(x+2\right)
Add 990 and 193 to get 1183.
125x^{2}-844x+1183=0\times 0\left(x-2\right)\left(x+2\right)
Combine -843x and -x to get -844x.
125x^{2}-844x+1183=0\left(x-2\right)\left(x+2\right)
Multiply 0 and 0 to get 0.
125x^{2}-844x+1183=0
Anything times zero gives zero.
125x^{2}-844x=-1183
Subtract 1183 from both sides. Anything subtracted from zero gives its negation.
\frac{125x^{2}-844x}{125}=-\frac{1183}{125}
Divide both sides by 125.
x^{2}-\frac{844}{125}x=-\frac{1183}{125}
Dividing by 125 undoes the multiplication by 125.
x^{2}-\frac{844}{125}x+\left(-\frac{422}{125}\right)^{2}=-\frac{1183}{125}+\left(-\frac{422}{125}\right)^{2}
Divide -\frac{844}{125}, the coefficient of the x term, by 2 to get -\frac{422}{125}. Then add the square of -\frac{422}{125} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{844}{125}x+\frac{178084}{15625}=-\frac{1183}{125}+\frac{178084}{15625}
Square -\frac{422}{125} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{844}{125}x+\frac{178084}{15625}=\frac{30209}{15625}
Add -\frac{1183}{125} to \frac{178084}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{422}{125}\right)^{2}=\frac{30209}{15625}
Factor x^{2}-\frac{844}{125}x+\frac{178084}{15625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{422}{125}\right)^{2}}=\sqrt{\frac{30209}{15625}}
Take the square root of both sides of the equation.
x-\frac{422}{125}=\frac{\sqrt{30209}}{125} x-\frac{422}{125}=-\frac{\sqrt{30209}}{125}
Simplify.
x=\frac{\sqrt{30209}+422}{125} x=\frac{422-\sqrt{30209}}{125}
Add \frac{422}{125} to both sides of the equation.