Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{9}{2}-3x^{2}=\left(\frac{11}{2}-2x^{2}\right)^{2}
Use the distributive property to multiply 3 by \frac{3}{2}-x^{2}.
\frac{9}{2}-3x^{2}=\frac{121}{4}-22x^{2}+4\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{11}{2}-2x^{2}\right)^{2}.
\frac{9}{2}-3x^{2}=\frac{121}{4}-22x^{2}+4x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9}{2}-3x^{2}-\frac{121}{4}=-22x^{2}+4x^{4}
Subtract \frac{121}{4} from both sides.
-\frac{103}{4}-3x^{2}=-22x^{2}+4x^{4}
Subtract \frac{121}{4} from \frac{9}{2} to get -\frac{103}{4}.
-\frac{103}{4}-3x^{2}+22x^{2}=4x^{4}
Add 22x^{2} to both sides.
-\frac{103}{4}+19x^{2}=4x^{4}
Combine -3x^{2} and 22x^{2} to get 19x^{2}.
-\frac{103}{4}+19x^{2}-4x^{4}=0
Subtract 4x^{4} from both sides.
-4t^{2}+19t-\frac{103}{4}=0
Substitute t for x^{2}.
t=\frac{-19±\sqrt{19^{2}-4\left(-4\right)\left(-\frac{103}{4}\right)}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, 19 for b, and -\frac{103}{4} for c in the quadratic formula.
t=\frac{-19±\sqrt{-51}}{-8}
Do the calculations.
t=\frac{-\sqrt{51}i+19}{8} t=\frac{19+\sqrt{51}i}{8}
Solve the equation t=\frac{-19±\sqrt{-51}}{-8} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{103}e^{-\frac{\arctan(\frac{\sqrt{51}}{19})i}{2}}}{2} x=\frac{\sqrt[4]{103}e^{\frac{-\arctan(\frac{\sqrt{51}}{19})i+2\pi i}{2}}}{2} x=\frac{\sqrt[4]{103}e^{\frac{\arctan(\frac{\sqrt{51}}{19})i+2\pi i}{2}}}{2} x=\frac{\sqrt[4]{103}e^{\frac{\arctan(\frac{\sqrt{51}}{19})i}{2}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.