Solve for x (complex solution)
x=\frac{\sqrt[4]{103}e^{\frac{-\arctan(\frac{\sqrt{51}}{19})i+2\pi i}{2}}}{2}\approx -1.567198598+0.284800712i
x=\frac{\sqrt[4]{103}e^{-\frac{\arctan(\frac{\sqrt{51}}{19})i}{2}}}{2}\approx 1.567198598-0.284800712i
x=\frac{\sqrt[4]{103}e^{\frac{\arctan(\frac{\sqrt{51}}{19})i+2\pi i}{2}}}{2}\approx -1.567198598-0.284800712i
x=\frac{\sqrt[4]{103}e^{\frac{\arctan(\frac{\sqrt{51}}{19})i}{2}}}{2}\approx 1.567198598+0.284800712i
Graph
Share
Copied to clipboard
\frac{9}{2}-3x^{2}=\left(\frac{11}{2}-2x^{2}\right)^{2}
Use the distributive property to multiply 3 by \frac{3}{2}-x^{2}.
\frac{9}{2}-3x^{2}=\frac{121}{4}-22x^{2}+4\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{11}{2}-2x^{2}\right)^{2}.
\frac{9}{2}-3x^{2}=\frac{121}{4}-22x^{2}+4x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9}{2}-3x^{2}-\frac{121}{4}=-22x^{2}+4x^{4}
Subtract \frac{121}{4} from both sides.
-\frac{103}{4}-3x^{2}=-22x^{2}+4x^{4}
Subtract \frac{121}{4} from \frac{9}{2} to get -\frac{103}{4}.
-\frac{103}{4}-3x^{2}+22x^{2}=4x^{4}
Add 22x^{2} to both sides.
-\frac{103}{4}+19x^{2}=4x^{4}
Combine -3x^{2} and 22x^{2} to get 19x^{2}.
-\frac{103}{4}+19x^{2}-4x^{4}=0
Subtract 4x^{4} from both sides.
-4t^{2}+19t-\frac{103}{4}=0
Substitute t for x^{2}.
t=\frac{-19±\sqrt{19^{2}-4\left(-4\right)\left(-\frac{103}{4}\right)}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, 19 for b, and -\frac{103}{4} for c in the quadratic formula.
t=\frac{-19±\sqrt{-51}}{-8}
Do the calculations.
t=\frac{-\sqrt{51}i+19}{8} t=\frac{19+\sqrt{51}i}{8}
Solve the equation t=\frac{-19±\sqrt{-51}}{-8} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{103}e^{-\frac{\arctan(\frac{\sqrt{51}}{19})i}{2}}}{2} x=\frac{\sqrt[4]{103}e^{\frac{-\arctan(\frac{\sqrt{51}}{19})i+2\pi i}{2}}}{2} x=\frac{\sqrt[4]{103}e^{\frac{\arctan(\frac{\sqrt{51}}{19})i+2\pi i}{2}}}{2} x=\frac{\sqrt[4]{103}e^{\frac{\arctan(\frac{\sqrt{51}}{19})i}{2}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}