Solve for k
k\in \mathrm{R}
Share
Copied to clipboard
6+2\times 3-12+2k\left(3\times 3-\frac{2\times 3}{2}-6\right)=0
Multiply both sides of the equation by 2.
6+6-12+2k\left(3\times 3-\frac{2\times 3}{2}-6\right)=0
Multiply 2 and 3 to get 6.
12-12+2k\left(3\times 3-\frac{2\times 3}{2}-6\right)=0
Add 6 and 6 to get 12.
2k\left(3\times 3-\frac{2\times 3}{2}-6\right)=0
Subtract 12 from 12 to get 0.
2k\left(9-\frac{2\times 3}{2}-6\right)=0
Multiply 3 and 3 to get 9.
2k\left(9-3-6\right)=0
Cancel out 2 and 2.
2k\left(6-6\right)=0
Subtract 3 from 9 to get 6.
2k\times 0=0
Subtract 6 from 6 to get 0.
0k=0
Multiply 2 and 0 to get 0.
0=0
Anything times zero gives zero.
\text{true}
Compare 0 and 0.
k\in \mathrm{R}
This is true for any k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}