Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+11x+3
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=10\times 3=30
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
1,30 2,15 3,10 5,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calculate the sum for each pair.
a=5 b=6
The solution is the pair that gives sum 11.
\left(10x^{2}+5x\right)+\left(6x+3\right)
Rewrite 10x^{2}+11x+3 as \left(10x^{2}+5x\right)+\left(6x+3\right).
5x\left(2x+1\right)+3\left(2x+1\right)
Factor out 5x in the first and 3 in the second group.
\left(2x+1\right)\left(5x+3\right)
Factor out common term 2x+1 by using distributive property.
10x^{2}+11x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 10\times 3}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{121-4\times 10\times 3}}{2\times 10}
Square 11.
x=\frac{-11±\sqrt{121-40\times 3}}{2\times 10}
Multiply -4 times 10.
x=\frac{-11±\sqrt{121-120}}{2\times 10}
Multiply -40 times 3.
x=\frac{-11±\sqrt{1}}{2\times 10}
Add 121 to -120.
x=\frac{-11±1}{2\times 10}
Take the square root of 1.
x=\frac{-11±1}{20}
Multiply 2 times 10.
x=-\frac{10}{20}
Now solve the equation x=\frac{-11±1}{20} when ± is plus. Add -11 to 1.
x=-\frac{1}{2}
Reduce the fraction \frac{-10}{20} to lowest terms by extracting and canceling out 10.
x=-\frac{12}{20}
Now solve the equation x=\frac{-11±1}{20} when ± is minus. Subtract 1 from -11.
x=-\frac{3}{5}
Reduce the fraction \frac{-12}{20} to lowest terms by extracting and canceling out 4.
10x^{2}+11x+3=10\left(x-\left(-\frac{1}{2}\right)\right)\left(x-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{2} for x_{1} and -\frac{3}{5} for x_{2}.
10x^{2}+11x+3=10\left(x+\frac{1}{2}\right)\left(x+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10x^{2}+11x+3=10\times \frac{2x+1}{2}\left(x+\frac{3}{5}\right)
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}+11x+3=10\times \frac{2x+1}{2}\times \frac{5x+3}{5}
Add \frac{3}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}+11x+3=10\times \frac{\left(2x+1\right)\left(5x+3\right)}{2\times 5}
Multiply \frac{2x+1}{2} times \frac{5x+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}+11x+3=10\times \frac{\left(2x+1\right)\left(5x+3\right)}{10}
Multiply 2 times 5.
10x^{2}+11x+3=\left(2x+1\right)\left(5x+3\right)
Cancel out 10, the greatest common factor in 10 and 10.