Solve for x (complex solution)
x=\frac{-1+\sqrt{383}i}{2}\approx -0.5+9.785192895i
x=\frac{-\sqrt{383}i-1}{2}\approx -0.5-9.785192895i
Graph
Share
Copied to clipboard
x\left(x-4\right)\times 3+x\times 58=\left(x-4\right)\times 48+x\left(x-4\right)
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x-4,x.
\left(x^{2}-4x\right)\times 3+x\times 58=\left(x-4\right)\times 48+x\left(x-4\right)
Use the distributive property to multiply x by x-4.
3x^{2}-12x+x\times 58=\left(x-4\right)\times 48+x\left(x-4\right)
Use the distributive property to multiply x^{2}-4x by 3.
3x^{2}+46x=\left(x-4\right)\times 48+x\left(x-4\right)
Combine -12x and x\times 58 to get 46x.
3x^{2}+46x=48x-192+x\left(x-4\right)
Use the distributive property to multiply x-4 by 48.
3x^{2}+46x=48x-192+x^{2}-4x
Use the distributive property to multiply x by x-4.
3x^{2}+46x=44x-192+x^{2}
Combine 48x and -4x to get 44x.
3x^{2}+46x-44x=-192+x^{2}
Subtract 44x from both sides.
3x^{2}+2x=-192+x^{2}
Combine 46x and -44x to get 2x.
3x^{2}+2x-\left(-192\right)=x^{2}
Subtract -192 from both sides.
3x^{2}+2x+192=x^{2}
The opposite of -192 is 192.
3x^{2}+2x+192-x^{2}=0
Subtract x^{2} from both sides.
2x^{2}+2x+192=0
Combine 3x^{2} and -x^{2} to get 2x^{2}.
x=\frac{-2±\sqrt{2^{2}-4\times 2\times 192}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and 192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\times 192}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\times 192}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4-1536}}{2\times 2}
Multiply -8 times 192.
x=\frac{-2±\sqrt{-1532}}{2\times 2}
Add 4 to -1536.
x=\frac{-2±2\sqrt{383}i}{2\times 2}
Take the square root of -1532.
x=\frac{-2±2\sqrt{383}i}{4}
Multiply 2 times 2.
x=\frac{-2+2\sqrt{383}i}{4}
Now solve the equation x=\frac{-2±2\sqrt{383}i}{4} when ± is plus. Add -2 to 2i\sqrt{383}.
x=\frac{-1+\sqrt{383}i}{2}
Divide -2+2i\sqrt{383} by 4.
x=\frac{-2\sqrt{383}i-2}{4}
Now solve the equation x=\frac{-2±2\sqrt{383}i}{4} when ± is minus. Subtract 2i\sqrt{383} from -2.
x=\frac{-\sqrt{383}i-1}{2}
Divide -2-2i\sqrt{383} by 4.
x=\frac{-1+\sqrt{383}i}{2} x=\frac{-\sqrt{383}i-1}{2}
The equation is now solved.
x\left(x-4\right)\times 3+x\times 58=\left(x-4\right)\times 48+x\left(x-4\right)
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x-4,x.
\left(x^{2}-4x\right)\times 3+x\times 58=\left(x-4\right)\times 48+x\left(x-4\right)
Use the distributive property to multiply x by x-4.
3x^{2}-12x+x\times 58=\left(x-4\right)\times 48+x\left(x-4\right)
Use the distributive property to multiply x^{2}-4x by 3.
3x^{2}+46x=\left(x-4\right)\times 48+x\left(x-4\right)
Combine -12x and x\times 58 to get 46x.
3x^{2}+46x=48x-192+x\left(x-4\right)
Use the distributive property to multiply x-4 by 48.
3x^{2}+46x=48x-192+x^{2}-4x
Use the distributive property to multiply x by x-4.
3x^{2}+46x=44x-192+x^{2}
Combine 48x and -4x to get 44x.
3x^{2}+46x-44x=-192+x^{2}
Subtract 44x from both sides.
3x^{2}+2x=-192+x^{2}
Combine 46x and -44x to get 2x.
3x^{2}+2x-x^{2}=-192
Subtract x^{2} from both sides.
2x^{2}+2x=-192
Combine 3x^{2} and -x^{2} to get 2x^{2}.
\frac{2x^{2}+2x}{2}=-\frac{192}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=-\frac{192}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=-\frac{192}{2}
Divide 2 by 2.
x^{2}+x=-96
Divide -192 by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-96+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-96+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{383}{4}
Add -96 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{383}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{383}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{383}i}{2} x+\frac{1}{2}=-\frac{\sqrt{383}i}{2}
Simplify.
x=\frac{-1+\sqrt{383}i}{2} x=\frac{-\sqrt{383}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}