Evaluate
\frac{29}{9}\approx 3.222222222
Factor
\frac{29}{3 ^ {2}} = 3\frac{2}{9} = 3.2222222222222223
Share
Copied to clipboard
3+\frac{1}{3+\frac{1}{\frac{3}{3}-\frac{1}{3}}}
Convert 1 to fraction \frac{3}{3}.
3+\frac{1}{3+\frac{1}{\frac{3-1}{3}}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
3+\frac{1}{3+\frac{1}{\frac{2}{3}}}
Subtract 1 from 3 to get 2.
3+\frac{1}{3+1\times \frac{3}{2}}
Divide 1 by \frac{2}{3} by multiplying 1 by the reciprocal of \frac{2}{3}.
3+\frac{1}{3+\frac{3}{2}}
Multiply 1 and \frac{3}{2} to get \frac{3}{2}.
3+\frac{1}{\frac{6}{2}+\frac{3}{2}}
Convert 3 to fraction \frac{6}{2}.
3+\frac{1}{\frac{6+3}{2}}
Since \frac{6}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
3+\frac{1}{\frac{9}{2}}
Add 6 and 3 to get 9.
3+1\times \frac{2}{9}
Divide 1 by \frac{9}{2} by multiplying 1 by the reciprocal of \frac{9}{2}.
3+\frac{2}{9}
Multiply 1 and \frac{2}{9} to get \frac{2}{9}.
\frac{27}{9}+\frac{2}{9}
Convert 3 to fraction \frac{27}{9}.
\frac{27+2}{9}
Since \frac{27}{9} and \frac{2}{9} have the same denominator, add them by adding their numerators.
\frac{29}{9}
Add 27 and 2 to get 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}