Solve for y
y = -\frac{22}{15} = -1\frac{7}{15} \approx -1.466666667
Graph
Share
Copied to clipboard
3y-\frac{1}{3}-\frac{1}{2}y=-4
Subtract \frac{1}{2}y from both sides.
\frac{5}{2}y-\frac{1}{3}=-4
Combine 3y and -\frac{1}{2}y to get \frac{5}{2}y.
\frac{5}{2}y=-4+\frac{1}{3}
Add \frac{1}{3} to both sides.
\frac{5}{2}y=-\frac{12}{3}+\frac{1}{3}
Convert -4 to fraction -\frac{12}{3}.
\frac{5}{2}y=\frac{-12+1}{3}
Since -\frac{12}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{5}{2}y=-\frac{11}{3}
Add -12 and 1 to get -11.
y=-\frac{11}{3}\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
y=\frac{-11\times 2}{3\times 5}
Multiply -\frac{11}{3} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
y=\frac{-22}{15}
Do the multiplications in the fraction \frac{-11\times 2}{3\times 5}.
y=-\frac{22}{15}
Fraction \frac{-22}{15} can be rewritten as -\frac{22}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}