Solve for x
\left\{\begin{matrix}x=\frac{-21y^{3}+z^{2}-9z}{24y^{2}}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&\left(z=0\text{ or }z=9\right)\text{ and }y=0\end{matrix}\right.
Share
Copied to clipboard
3y^{2}\left(8x+7y\right)+9z=z^{2}
Multiply y and y to get y^{2}.
24xy^{2}+21y^{3}+9z=z^{2}
Use the distributive property to multiply 3y^{2} by 8x+7y.
24xy^{2}+9z=z^{2}-21y^{3}
Subtract 21y^{3} from both sides.
24xy^{2}=z^{2}-21y^{3}-9z
Subtract 9z from both sides.
24y^{2}x=-21y^{3}+z^{2}-9z
The equation is in standard form.
\frac{24y^{2}x}{24y^{2}}=\frac{-21y^{3}+z^{2}-9z}{24y^{2}}
Divide both sides by 24y^{2}.
x=\frac{-21y^{3}+z^{2}-9z}{24y^{2}}
Dividing by 24y^{2} undoes the multiplication by 24y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}