Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

3y^{2}\left(8x+7y\right)+9z=z^{2}
Multiply y and y to get y^{2}.
24xy^{2}+21y^{3}+9z=z^{2}
Use the distributive property to multiply 3y^{2} by 8x+7y.
24xy^{2}+9z=z^{2}-21y^{3}
Subtract 21y^{3} from both sides.
24xy^{2}=z^{2}-21y^{3}-9z
Subtract 9z from both sides.
24y^{2}x=-21y^{3}+z^{2}-9z
The equation is in standard form.
\frac{24y^{2}x}{24y^{2}}=\frac{-21y^{3}+z^{2}-9z}{24y^{2}}
Divide both sides by 24y^{2}.
x=\frac{-21y^{3}+z^{2}-9z}{24y^{2}}
Dividing by 24y^{2} undoes the multiplication by 24y^{2}.