Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6y^{2}-3y=4y-2
Use the distributive property to multiply 3y by 2y-1.
6y^{2}-3y-4y=-2
Subtract 4y from both sides.
6y^{2}-7y=-2
Combine -3y and -4y to get -7y.
6y^{2}-7y+2=0
Add 2 to both sides.
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\times 2}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-7\right)±\sqrt{49-4\times 6\times 2}}{2\times 6}
Square -7.
y=\frac{-\left(-7\right)±\sqrt{49-24\times 2}}{2\times 6}
Multiply -4 times 6.
y=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 6}
Multiply -24 times 2.
y=\frac{-\left(-7\right)±\sqrt{1}}{2\times 6}
Add 49 to -48.
y=\frac{-\left(-7\right)±1}{2\times 6}
Take the square root of 1.
y=\frac{7±1}{2\times 6}
The opposite of -7 is 7.
y=\frac{7±1}{12}
Multiply 2 times 6.
y=\frac{8}{12}
Now solve the equation y=\frac{7±1}{12} when ± is plus. Add 7 to 1.
y=\frac{2}{3}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
y=\frac{6}{12}
Now solve the equation y=\frac{7±1}{12} when ± is minus. Subtract 1 from 7.
y=\frac{1}{2}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
y=\frac{2}{3} y=\frac{1}{2}
The equation is now solved.
6y^{2}-3y=4y-2
Use the distributive property to multiply 3y by 2y-1.
6y^{2}-3y-4y=-2
Subtract 4y from both sides.
6y^{2}-7y=-2
Combine -3y and -4y to get -7y.
\frac{6y^{2}-7y}{6}=-\frac{2}{6}
Divide both sides by 6.
y^{2}-\frac{7}{6}y=-\frac{2}{6}
Dividing by 6 undoes the multiplication by 6.
y^{2}-\frac{7}{6}y=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{7}{6}y+\left(-\frac{7}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{7}{12}\right)^{2}
Divide -\frac{7}{6}, the coefficient of the x term, by 2 to get -\frac{7}{12}. Then add the square of -\frac{7}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{7}{6}y+\frac{49}{144}=-\frac{1}{3}+\frac{49}{144}
Square -\frac{7}{12} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{7}{6}y+\frac{49}{144}=\frac{1}{144}
Add -\frac{1}{3} to \frac{49}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{7}{12}\right)^{2}=\frac{1}{144}
Factor y^{2}-\frac{7}{6}y+\frac{49}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{7}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Take the square root of both sides of the equation.
y-\frac{7}{12}=\frac{1}{12} y-\frac{7}{12}=-\frac{1}{12}
Simplify.
y=\frac{2}{3} y=\frac{1}{2}
Add \frac{7}{12} to both sides of the equation.