Solve for y
y=-\frac{\sqrt{750-30\sqrt{235}}}{30}\approx -0.567752595
y=\frac{\sqrt{750-30\sqrt{235}}}{30}\approx 0.567752595
y = \frac{\sqrt{30 \sqrt{235} + 750}}{30} \approx 1.159449722
y = -\frac{\sqrt{30 \sqrt{235} + 750}}{30} \approx -1.159449722
Graph
Share
Copied to clipboard
3t^{2}-5t+1.3=0
Substitute t for y^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\times 1.3}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -5 for b, and 1.3 for c in the quadratic formula.
t=\frac{5±\frac{1}{5}\sqrt{235}}{6}
Do the calculations.
t=\frac{\sqrt{235}}{30}+\frac{5}{6} t=-\frac{\sqrt{235}}{30}+\frac{5}{6}
Solve the equation t=\frac{5±\frac{1}{5}\sqrt{235}}{6} when ± is plus and when ± is minus.
y=\frac{\sqrt{\frac{2\sqrt{235}}{15}+\frac{10}{3}}}{2} y=-\frac{\sqrt{\frac{2\sqrt{235}}{15}+\frac{10}{3}}}{2} y=\frac{\sqrt{-\frac{2\sqrt{235}}{15}+\frac{10}{3}}}{2} y=-\frac{\sqrt{-\frac{2\sqrt{235}}{15}+\frac{10}{3}}}{2}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}