Solve for y
y = \frac{\sqrt{97} + 5}{6} \approx 2.474809634
y=\frac{5-\sqrt{97}}{6}\approx -0.808142967
Graph
Share
Copied to clipboard
3y^{2}-5y-14=-8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3y^{2}-5y-14-\left(-8\right)=-8-\left(-8\right)
Add 8 to both sides of the equation.
3y^{2}-5y-14-\left(-8\right)=0
Subtracting -8 from itself leaves 0.
3y^{2}-5y-6=0
Subtract -8 from -14.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-6\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -5 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-6\right)}}{2\times 3}
Square -5.
y=\frac{-\left(-5\right)±\sqrt{25-12\left(-6\right)}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-5\right)±\sqrt{25+72}}{2\times 3}
Multiply -12 times -6.
y=\frac{-\left(-5\right)±\sqrt{97}}{2\times 3}
Add 25 to 72.
y=\frac{5±\sqrt{97}}{2\times 3}
The opposite of -5 is 5.
y=\frac{5±\sqrt{97}}{6}
Multiply 2 times 3.
y=\frac{\sqrt{97}+5}{6}
Now solve the equation y=\frac{5±\sqrt{97}}{6} when ± is plus. Add 5 to \sqrt{97}.
y=\frac{5-\sqrt{97}}{6}
Now solve the equation y=\frac{5±\sqrt{97}}{6} when ± is minus. Subtract \sqrt{97} from 5.
y=\frac{\sqrt{97}+5}{6} y=\frac{5-\sqrt{97}}{6}
The equation is now solved.
3y^{2}-5y-14=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3y^{2}-5y-14-\left(-14\right)=-8-\left(-14\right)
Add 14 to both sides of the equation.
3y^{2}-5y=-8-\left(-14\right)
Subtracting -14 from itself leaves 0.
3y^{2}-5y=6
Subtract -14 from -8.
\frac{3y^{2}-5y}{3}=\frac{6}{3}
Divide both sides by 3.
y^{2}-\frac{5}{3}y=\frac{6}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-\frac{5}{3}y=2
Divide 6 by 3.
y^{2}-\frac{5}{3}y+\left(-\frac{5}{6}\right)^{2}=2+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{5}{3}y+\frac{25}{36}=2+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{5}{3}y+\frac{25}{36}=\frac{97}{36}
Add 2 to \frac{25}{36}.
\left(y-\frac{5}{6}\right)^{2}=\frac{97}{36}
Factor y^{2}-\frac{5}{3}y+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{6}\right)^{2}}=\sqrt{\frac{97}{36}}
Take the square root of both sides of the equation.
y-\frac{5}{6}=\frac{\sqrt{97}}{6} y-\frac{5}{6}=-\frac{\sqrt{97}}{6}
Simplify.
y=\frac{\sqrt{97}+5}{6} y=\frac{5-\sqrt{97}}{6}
Add \frac{5}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}