Solve for y
y=\frac{6}{x^{4}}
x\neq 0
Solve for x (complex solution)
x=i\sqrt[4]{6}y^{-0.25}
x=\sqrt[4]{6}y^{-0.25}
x=-\sqrt[4]{6}y^{-0.25}
x=-i\sqrt[4]{6}y^{-0.25}\text{, }y\neq 0
Solve for x
x=\sqrt[4]{\frac{6}{y}}
x=-\sqrt[4]{\frac{6}{y}}\text{, }y>0
Graph
Share
Copied to clipboard
3\times \frac{1}{y}=0.5x^{4}
Reorder the terms.
3\times 1=0.5x^{4}y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
3=0.5x^{4}y
Multiply 3 and 1 to get 3.
0.5x^{4}y=3
Swap sides so that all variable terms are on the left hand side.
\frac{x^{4}}{2}y=3
The equation is in standard form.
\frac{2\times \frac{x^{4}}{2}y}{x^{4}}=\frac{2\times 3}{x^{4}}
Divide both sides by 0.5x^{4}.
y=\frac{2\times 3}{x^{4}}
Dividing by 0.5x^{4} undoes the multiplication by 0.5x^{4}.
y=\frac{6}{x^{4}}
Divide 3 by 0.5x^{4}.
y=\frac{6}{x^{4}}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}