Solve for x
x=-\frac{3y}{y+5}
y\neq -5
Solve for y
y=-\frac{5x}{x+3}
x\neq -3
Graph
Share
Copied to clipboard
3y+5x+xy=0
Add xy to both sides.
5x+xy=-3y
Subtract 3y from both sides. Anything subtracted from zero gives its negation.
\left(5+y\right)x=-3y
Combine all terms containing x.
\left(y+5\right)x=-3y
The equation is in standard form.
\frac{\left(y+5\right)x}{y+5}=-\frac{3y}{y+5}
Divide both sides by 5+y.
x=-\frac{3y}{y+5}
Dividing by 5+y undoes the multiplication by 5+y.
3y+5x+xy=0
Add xy to both sides.
3y+xy=-5x
Subtract 5x from both sides. Anything subtracted from zero gives its negation.
\left(3+x\right)y=-5x
Combine all terms containing y.
\left(x+3\right)y=-5x
The equation is in standard form.
\frac{\left(x+3\right)y}{x+3}=-\frac{5x}{x+3}
Divide both sides by 3+x.
y=-\frac{5x}{x+3}
Dividing by 3+x undoes the multiplication by 3+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}