Solve for y
y = \frac{\sqrt{91} + 10}{3} \approx 6.513130671
y=\frac{10-\sqrt{91}}{3}\approx 0.153535995
Graph
Share
Copied to clipboard
3yy+3=20y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
3y^{2}+3=20y
Multiply y and y to get y^{2}.
3y^{2}+3-20y=0
Subtract 20y from both sides.
3y^{2}-20y+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -20 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-20\right)±\sqrt{400-4\times 3\times 3}}{2\times 3}
Square -20.
y=\frac{-\left(-20\right)±\sqrt{400-12\times 3}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-20\right)±\sqrt{400-36}}{2\times 3}
Multiply -12 times 3.
y=\frac{-\left(-20\right)±\sqrt{364}}{2\times 3}
Add 400 to -36.
y=\frac{-\left(-20\right)±2\sqrt{91}}{2\times 3}
Take the square root of 364.
y=\frac{20±2\sqrt{91}}{2\times 3}
The opposite of -20 is 20.
y=\frac{20±2\sqrt{91}}{6}
Multiply 2 times 3.
y=\frac{2\sqrt{91}+20}{6}
Now solve the equation y=\frac{20±2\sqrt{91}}{6} when ± is plus. Add 20 to 2\sqrt{91}.
y=\frac{\sqrt{91}+10}{3}
Divide 20+2\sqrt{91} by 6.
y=\frac{20-2\sqrt{91}}{6}
Now solve the equation y=\frac{20±2\sqrt{91}}{6} when ± is minus. Subtract 2\sqrt{91} from 20.
y=\frac{10-\sqrt{91}}{3}
Divide 20-2\sqrt{91} by 6.
y=\frac{\sqrt{91}+10}{3} y=\frac{10-\sqrt{91}}{3}
The equation is now solved.
3yy+3=20y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
3y^{2}+3=20y
Multiply y and y to get y^{2}.
3y^{2}+3-20y=0
Subtract 20y from both sides.
3y^{2}-20y=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{3y^{2}-20y}{3}=-\frac{3}{3}
Divide both sides by 3.
y^{2}-\frac{20}{3}y=-\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-\frac{20}{3}y=-1
Divide -3 by 3.
y^{2}-\frac{20}{3}y+\left(-\frac{10}{3}\right)^{2}=-1+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{20}{3}y+\frac{100}{9}=-1+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{20}{3}y+\frac{100}{9}=\frac{91}{9}
Add -1 to \frac{100}{9}.
\left(y-\frac{10}{3}\right)^{2}=\frac{91}{9}
Factor y^{2}-\frac{20}{3}y+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{10}{3}\right)^{2}}=\sqrt{\frac{91}{9}}
Take the square root of both sides of the equation.
y-\frac{10}{3}=\frac{\sqrt{91}}{3} y-\frac{10}{3}=-\frac{\sqrt{91}}{3}
Simplify.
y=\frac{\sqrt{91}+10}{3} y=\frac{10-\sqrt{91}}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}