Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-18x=6x^{2}+3x+4
Multiply 2 and 9 to get 18.
-15x=6x^{2}+3x+4
Combine 3x and -18x to get -15x.
-15x-6x^{2}=3x+4
Subtract 6x^{2} from both sides.
-15x-6x^{2}-3x=4
Subtract 3x from both sides.
-18x-6x^{2}=4
Combine -15x and -3x to get -18x.
-18x-6x^{2}-4=0
Subtract 4 from both sides.
-6x^{2}-18x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-6\right)\left(-4\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -18 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-6\right)\left(-4\right)}}{2\left(-6\right)}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324+24\left(-4\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-18\right)±\sqrt{324-96}}{2\left(-6\right)}
Multiply 24 times -4.
x=\frac{-\left(-18\right)±\sqrt{228}}{2\left(-6\right)}
Add 324 to -96.
x=\frac{-\left(-18\right)±2\sqrt{57}}{2\left(-6\right)}
Take the square root of 228.
x=\frac{18±2\sqrt{57}}{2\left(-6\right)}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{57}}{-12}
Multiply 2 times -6.
x=\frac{2\sqrt{57}+18}{-12}
Now solve the equation x=\frac{18±2\sqrt{57}}{-12} when ± is plus. Add 18 to 2\sqrt{57}.
x=-\frac{\sqrt{57}}{6}-\frac{3}{2}
Divide 18+2\sqrt{57} by -12.
x=\frac{18-2\sqrt{57}}{-12}
Now solve the equation x=\frac{18±2\sqrt{57}}{-12} when ± is minus. Subtract 2\sqrt{57} from 18.
x=\frac{\sqrt{57}}{6}-\frac{3}{2}
Divide 18-2\sqrt{57} by -12.
x=-\frac{\sqrt{57}}{6}-\frac{3}{2} x=\frac{\sqrt{57}}{6}-\frac{3}{2}
The equation is now solved.
3x-18x=6x^{2}+3x+4
Multiply 2 and 9 to get 18.
-15x=6x^{2}+3x+4
Combine 3x and -18x to get -15x.
-15x-6x^{2}=3x+4
Subtract 6x^{2} from both sides.
-15x-6x^{2}-3x=4
Subtract 3x from both sides.
-18x-6x^{2}=4
Combine -15x and -3x to get -18x.
-6x^{2}-18x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}-18x}{-6}=\frac{4}{-6}
Divide both sides by -6.
x^{2}+\left(-\frac{18}{-6}\right)x=\frac{4}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}+3x=\frac{4}{-6}
Divide -18 by -6.
x^{2}+3x=-\frac{2}{3}
Reduce the fraction \frac{4}{-6} to lowest terms by extracting and canceling out 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{2}{3}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-\frac{2}{3}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{19}{12}
Add -\frac{2}{3} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{19}{12}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{19}{12}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{57}}{6} x+\frac{3}{2}=-\frac{\sqrt{57}}{6}
Simplify.
x=\frac{\sqrt{57}}{6}-\frac{3}{2} x=-\frac{\sqrt{57}}{6}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.