Solve for x
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
Graph
Share
Copied to clipboard
\sqrt{x^{2}-6x+9}=2\left(x+3\right)-\left(3x-2\right)
Subtract 3x-2 from both sides of the equation.
\sqrt{x^{2}-6x+9}=2x+6-\left(3x-2\right)
Use the distributive property to multiply 2 by x+3.
\sqrt{x^{2}-6x+9}=2x+6-3x+2
To find the opposite of 3x-2, find the opposite of each term.
\sqrt{x^{2}-6x+9}=-x+6+2
Combine 2x and -3x to get -x.
\sqrt{x^{2}-6x+9}=-x+8
Add 6 and 2 to get 8.
\left(\sqrt{x^{2}-6x+9}\right)^{2}=\left(-x+8\right)^{2}
Square both sides of the equation.
x^{2}-6x+9=\left(-x+8\right)^{2}
Calculate \sqrt{x^{2}-6x+9} to the power of 2 and get x^{2}-6x+9.
x^{2}-6x+9=x^{2}-16x+64
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+8\right)^{2}.
x^{2}-6x+9-x^{2}=-16x+64
Subtract x^{2} from both sides.
-6x+9=-16x+64
Combine x^{2} and -x^{2} to get 0.
-6x+9+16x=64
Add 16x to both sides.
10x+9=64
Combine -6x and 16x to get 10x.
10x=64-9
Subtract 9 from both sides.
10x=55
Subtract 9 from 64 to get 55.
x=\frac{55}{10}
Divide both sides by 10.
x=\frac{11}{2}
Reduce the fraction \frac{55}{10} to lowest terms by extracting and canceling out 5.
3\times \frac{11}{2}-2+\sqrt{\left(\frac{11}{2}\right)^{2}-6\times \frac{11}{2}+9}=2\left(\frac{11}{2}+3\right)
Substitute \frac{11}{2} for x in the equation 3x-2+\sqrt{x^{2}-6x+9}=2\left(x+3\right).
17=17
Simplify. The value x=\frac{11}{2} satisfies the equation.
x=\frac{11}{2}
Equation \sqrt{x^{2}-6x+9}=8-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}