Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-3x+4x=\frac{3}{4}\left(x+1\right)-6x
Use the distributive property to multiply 3x by x-1.
3x^{2}+x=\frac{3}{4}\left(x+1\right)-6x
Combine -3x and 4x to get x.
3x^{2}+x=\frac{3}{4}x+\frac{3}{4}-6x
Use the distributive property to multiply \frac{3}{4} by x+1.
3x^{2}+x=-\frac{21}{4}x+\frac{3}{4}
Combine \frac{3}{4}x and -6x to get -\frac{21}{4}x.
3x^{2}+x+\frac{21}{4}x=\frac{3}{4}
Add \frac{21}{4}x to both sides.
3x^{2}+\frac{25}{4}x=\frac{3}{4}
Combine x and \frac{21}{4}x to get \frac{25}{4}x.
3x^{2}+\frac{25}{4}x-\frac{3}{4}=0
Subtract \frac{3}{4} from both sides.
x=\frac{-\frac{25}{4}±\sqrt{\left(\frac{25}{4}\right)^{2}-4\times 3\left(-\frac{3}{4}\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, \frac{25}{4} for b, and -\frac{3}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{25}{4}±\sqrt{\frac{625}{16}-4\times 3\left(-\frac{3}{4}\right)}}{2\times 3}
Square \frac{25}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{25}{4}±\sqrt{\frac{625}{16}-12\left(-\frac{3}{4}\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\frac{25}{4}±\sqrt{\frac{625}{16}+9}}{2\times 3}
Multiply -12 times -\frac{3}{4}.
x=\frac{-\frac{25}{4}±\sqrt{\frac{769}{16}}}{2\times 3}
Add \frac{625}{16} to 9.
x=\frac{-\frac{25}{4}±\frac{\sqrt{769}}{4}}{2\times 3}
Take the square root of \frac{769}{16}.
x=\frac{-\frac{25}{4}±\frac{\sqrt{769}}{4}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{769}-25}{4\times 6}
Now solve the equation x=\frac{-\frac{25}{4}±\frac{\sqrt{769}}{4}}{6} when ± is plus. Add -\frac{25}{4} to \frac{\sqrt{769}}{4}.
x=\frac{\sqrt{769}-25}{24}
Divide \frac{-25+\sqrt{769}}{4} by 6.
x=\frac{-\sqrt{769}-25}{4\times 6}
Now solve the equation x=\frac{-\frac{25}{4}±\frac{\sqrt{769}}{4}}{6} when ± is minus. Subtract \frac{\sqrt{769}}{4} from -\frac{25}{4}.
x=\frac{-\sqrt{769}-25}{24}
Divide \frac{-25-\sqrt{769}}{4} by 6.
x=\frac{\sqrt{769}-25}{24} x=\frac{-\sqrt{769}-25}{24}
The equation is now solved.
3x^{2}-3x+4x=\frac{3}{4}\left(x+1\right)-6x
Use the distributive property to multiply 3x by x-1.
3x^{2}+x=\frac{3}{4}\left(x+1\right)-6x
Combine -3x and 4x to get x.
3x^{2}+x=\frac{3}{4}x+\frac{3}{4}-6x
Use the distributive property to multiply \frac{3}{4} by x+1.
3x^{2}+x=-\frac{21}{4}x+\frac{3}{4}
Combine \frac{3}{4}x and -6x to get -\frac{21}{4}x.
3x^{2}+x+\frac{21}{4}x=\frac{3}{4}
Add \frac{21}{4}x to both sides.
3x^{2}+\frac{25}{4}x=\frac{3}{4}
Combine x and \frac{21}{4}x to get \frac{25}{4}x.
\frac{3x^{2}+\frac{25}{4}x}{3}=\frac{\frac{3}{4}}{3}
Divide both sides by 3.
x^{2}+\frac{\frac{25}{4}}{3}x=\frac{\frac{3}{4}}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{25}{12}x=\frac{\frac{3}{4}}{3}
Divide \frac{25}{4} by 3.
x^{2}+\frac{25}{12}x=\frac{1}{4}
Divide \frac{3}{4} by 3.
x^{2}+\frac{25}{12}x+\left(\frac{25}{24}\right)^{2}=\frac{1}{4}+\left(\frac{25}{24}\right)^{2}
Divide \frac{25}{12}, the coefficient of the x term, by 2 to get \frac{25}{24}. Then add the square of \frac{25}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{1}{4}+\frac{625}{576}
Square \frac{25}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{769}{576}
Add \frac{1}{4} to \frac{625}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{24}\right)^{2}=\frac{769}{576}
Factor x^{2}+\frac{25}{12}x+\frac{625}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{24}\right)^{2}}=\sqrt{\frac{769}{576}}
Take the square root of both sides of the equation.
x+\frac{25}{24}=\frac{\sqrt{769}}{24} x+\frac{25}{24}=-\frac{\sqrt{769}}{24}
Simplify.
x=\frac{\sqrt{769}-25}{24} x=\frac{-\sqrt{769}-25}{24}
Subtract \frac{25}{24} from both sides of the equation.