Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x=0
Graph
Share
Copied to clipboard
3x^{2}+3x=5x\left(3-x\right)
Use the distributive property to multiply 3x by x+1.
3x^{2}+3x=15x-5x^{2}
Use the distributive property to multiply 5x by 3-x.
3x^{2}+3x-15x=-5x^{2}
Subtract 15x from both sides.
3x^{2}-12x=-5x^{2}
Combine 3x and -15x to get -12x.
3x^{2}-12x+5x^{2}=0
Add 5x^{2} to both sides.
8x^{2}-12x=0
Combine 3x^{2} and 5x^{2} to get 8x^{2}.
x\left(8x-12\right)=0
Factor out x.
x=0 x=\frac{3}{2}
To find equation solutions, solve x=0 and 8x-12=0.
3x^{2}+3x=5x\left(3-x\right)
Use the distributive property to multiply 3x by x+1.
3x^{2}+3x=15x-5x^{2}
Use the distributive property to multiply 5x by 3-x.
3x^{2}+3x-15x=-5x^{2}
Subtract 15x from both sides.
3x^{2}-12x=-5x^{2}
Combine 3x and -15x to get -12x.
3x^{2}-12x+5x^{2}=0
Add 5x^{2} to both sides.
8x^{2}-12x=0
Combine 3x^{2} and 5x^{2} to get 8x^{2}.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -12 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±12}{2\times 8}
Take the square root of \left(-12\right)^{2}.
x=\frac{12±12}{2\times 8}
The opposite of -12 is 12.
x=\frac{12±12}{16}
Multiply 2 times 8.
x=\frac{24}{16}
Now solve the equation x=\frac{12±12}{16} when ± is plus. Add 12 to 12.
x=\frac{3}{2}
Reduce the fraction \frac{24}{16} to lowest terms by extracting and canceling out 8.
x=\frac{0}{16}
Now solve the equation x=\frac{12±12}{16} when ± is minus. Subtract 12 from 12.
x=0
Divide 0 by 16.
x=\frac{3}{2} x=0
The equation is now solved.
3x^{2}+3x=5x\left(3-x\right)
Use the distributive property to multiply 3x by x+1.
3x^{2}+3x=15x-5x^{2}
Use the distributive property to multiply 5x by 3-x.
3x^{2}+3x-15x=-5x^{2}
Subtract 15x from both sides.
3x^{2}-12x=-5x^{2}
Combine 3x and -15x to get -12x.
3x^{2}-12x+5x^{2}=0
Add 5x^{2} to both sides.
8x^{2}-12x=0
Combine 3x^{2} and 5x^{2} to get 8x^{2}.
\frac{8x^{2}-12x}{8}=\frac{0}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{12}{8}\right)x=\frac{0}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{3}{2}x=\frac{0}{8}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3}{2}x=0
Divide 0 by 8.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{3}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{3}{4} x-\frac{3}{4}=-\frac{3}{4}
Simplify.
x=\frac{3}{2} x=0
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}