Solve for x
x\in \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)
Graph
Share
Copied to clipboard
6x^{2}+9x<2x\left(x+4.5\right)+2
Use the distributive property to multiply 3x by 2x+3.
6x^{2}+9x<2x^{2}+9x+2
Use the distributive property to multiply 2x by x+4.5.
6x^{2}+9x-2x^{2}<9x+2
Subtract 2x^{2} from both sides.
4x^{2}+9x<9x+2
Combine 6x^{2} and -2x^{2} to get 4x^{2}.
4x^{2}+9x-9x<2
Subtract 9x from both sides.
4x^{2}<2
Combine 9x and -9x to get 0.
x^{2}<\frac{2}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
x^{2}<\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}<\left(\frac{\sqrt{2}}{2}\right)^{2}
Calculate the square root of \frac{1}{2} and get \frac{\sqrt{2}}{2}. Rewrite \frac{1}{2} as \left(\frac{\sqrt{2}}{2}\right)^{2}.
|x|<\frac{\sqrt{2}}{2}
Inequality holds for |x|<\frac{\sqrt{2}}{2}.
x\in \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)
Rewrite |x|<\frac{\sqrt{2}}{2} as x\in \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}