Evaluate
\frac{3x^{2}}{1000}-6
Factor
\frac{3\left(x^{2}-2000\right)}{1000}
Graph
Share
Copied to clipboard
\frac{3x}{1000}x-6
Calculate 10 to the power of 3 and get 1000.
\frac{3xx}{1000}-6
Express \frac{3x}{1000}x as a single fraction.
\frac{3xx}{1000}-\frac{6\times 1000}{1000}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{1000}{1000}.
\frac{3xx-6\times 1000}{1000}
Since \frac{3xx}{1000} and \frac{6\times 1000}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-6000}{1000}
Do the multiplications in 3xx-6\times 1000.
factor(\frac{3x}{1000}x-6)
Calculate 10 to the power of 3 and get 1000.
factor(\frac{3xx}{1000}-6)
Express \frac{3x}{1000}x as a single fraction.
factor(\frac{3xx}{1000}-\frac{6\times 1000}{1000})
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{1000}{1000}.
factor(\frac{3xx-6\times 1000}{1000})
Since \frac{3xx}{1000} and \frac{6\times 1000}{1000} have the same denominator, subtract them by subtracting their numerators.
factor(\frac{3x^{2}-6000}{1000})
Do the multiplications in 3xx-6\times 1000.
3\left(x^{2}-2000\right)
Consider 3x^{2}-6000. Factor out 3.
\frac{3\left(x^{2}-2000\right)}{1000}
Rewrite the complete factored expression. Simplify. Polynomial x^{2}-2000 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}