Solve for x
x = -\frac{\sqrt{78 - 6 \sqrt{106}}}{3} \approx -1.342726048
x = \frac{\sqrt{78 - 6 \sqrt{106}}}{3} \approx 1.342726048
x = \frac{\sqrt{6 \sqrt{106} + 78}}{3} \approx 3.940865399
x = -\frac{\sqrt{6 \sqrt{106} + 78}}{3} \approx -3.940865399
Graph
Share
Copied to clipboard
3x^{4}+84-52x^{2}=0
Subtract 52x^{2} from both sides.
3t^{2}-52t+84=0
Substitute t for x^{2}.
t=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 3\times 84}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -52 for b, and 84 for c in the quadratic formula.
t=\frac{52±4\sqrt{106}}{6}
Do the calculations.
t=\frac{2\sqrt{106}+26}{3} t=\frac{26-2\sqrt{106}}{3}
Solve the equation t=\frac{52±4\sqrt{106}}{6} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{8\sqrt{106}+104}{3}}}{2} x=-\frac{\sqrt{\frac{8\sqrt{106}+104}{3}}}{2} x=\frac{\sqrt{\frac{104-8\sqrt{106}}{3}}}{2} x=-\frac{\sqrt{\frac{104-8\sqrt{106}}{3}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}