Factor
\left(x+4\right)\left(x+6\right)\left(3x+1\right)
Evaluate
\left(x+4\right)\left(x+6\right)\left(3x+1\right)
Graph
Share
Copied to clipboard
\left(x+4\right)\left(3x^{2}+19x+6\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 24 and q divides the leading coefficient 3. One such root is -4. Factor the polynomial by dividing it by x+4.
a+b=19 ab=3\times 6=18
Consider 3x^{2}+19x+6. Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=1 b=18
The solution is the pair that gives sum 19.
\left(3x^{2}+x\right)+\left(18x+6\right)
Rewrite 3x^{2}+19x+6 as \left(3x^{2}+x\right)+\left(18x+6\right).
x\left(3x+1\right)+6\left(3x+1\right)
Factor out x in the first and 6 in the second group.
\left(3x+1\right)\left(x+6\right)
Factor out common term 3x+1 by using distributive property.
\left(3x+1\right)\left(x+4\right)\left(x+6\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}