Solve for x
x=-3
x = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
Graph
Share
Copied to clipboard
3x^{2}-4x-39=0
Subtract 39 from both sides.
a+b=-4 ab=3\left(-39\right)=-117
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-39. To find a and b, set up a system to be solved.
1,-117 3,-39 9,-13
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -117.
1-117=-116 3-39=-36 9-13=-4
Calculate the sum for each pair.
a=-13 b=9
The solution is the pair that gives sum -4.
\left(3x^{2}-13x\right)+\left(9x-39\right)
Rewrite 3x^{2}-4x-39 as \left(3x^{2}-13x\right)+\left(9x-39\right).
x\left(3x-13\right)+3\left(3x-13\right)
Factor out x in the first and 3 in the second group.
\left(3x-13\right)\left(x+3\right)
Factor out common term 3x-13 by using distributive property.
x=\frac{13}{3} x=-3
To find equation solutions, solve 3x-13=0 and x+3=0.
3x^{2}-4x=39
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-4x-39=39-39
Subtract 39 from both sides of the equation.
3x^{2}-4x-39=0
Subtracting 39 from itself leaves 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-39\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -4 for b, and -39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-39\right)}}{2\times 3}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-39\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-4\right)±\sqrt{16+468}}{2\times 3}
Multiply -12 times -39.
x=\frac{-\left(-4\right)±\sqrt{484}}{2\times 3}
Add 16 to 468.
x=\frac{-\left(-4\right)±22}{2\times 3}
Take the square root of 484.
x=\frac{4±22}{2\times 3}
The opposite of -4 is 4.
x=\frac{4±22}{6}
Multiply 2 times 3.
x=\frac{26}{6}
Now solve the equation x=\frac{4±22}{6} when ± is plus. Add 4 to 22.
x=\frac{13}{3}
Reduce the fraction \frac{26}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{18}{6}
Now solve the equation x=\frac{4±22}{6} when ± is minus. Subtract 22 from 4.
x=-3
Divide -18 by 6.
x=\frac{13}{3} x=-3
The equation is now solved.
3x^{2}-4x=39
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-4x}{3}=\frac{39}{3}
Divide both sides by 3.
x^{2}-\frac{4}{3}x=\frac{39}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{4}{3}x=13
Divide 39 by 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=13+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=13+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{121}{9}
Add 13 to \frac{4}{9}.
\left(x-\frac{2}{3}\right)^{2}=\frac{121}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{11}{3} x-\frac{2}{3}=-\frac{11}{3}
Simplify.
x=\frac{13}{3} x=-3
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}