Factor
\left(x-4\right)\left(3x-7\right)
Evaluate
\left(x-4\right)\left(3x-7\right)
Graph
Share
Copied to clipboard
a+b=-19 ab=3\times 28=84
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+28. To find a and b, set up a system to be solved.
-1,-84 -2,-42 -3,-28 -4,-21 -6,-14 -7,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 84.
-1-84=-85 -2-42=-44 -3-28=-31 -4-21=-25 -6-14=-20 -7-12=-19
Calculate the sum for each pair.
a=-12 b=-7
The solution is the pair that gives sum -19.
\left(3x^{2}-12x\right)+\left(-7x+28\right)
Rewrite 3x^{2}-19x+28 as \left(3x^{2}-12x\right)+\left(-7x+28\right).
3x\left(x-4\right)-7\left(x-4\right)
Factor out 3x in the first and -7 in the second group.
\left(x-4\right)\left(3x-7\right)
Factor out common term x-4 by using distributive property.
3x^{2}-19x+28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 3\times 28}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 3\times 28}}{2\times 3}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-12\times 28}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-19\right)±\sqrt{361-336}}{2\times 3}
Multiply -12 times 28.
x=\frac{-\left(-19\right)±\sqrt{25}}{2\times 3}
Add 361 to -336.
x=\frac{-\left(-19\right)±5}{2\times 3}
Take the square root of 25.
x=\frac{19±5}{2\times 3}
The opposite of -19 is 19.
x=\frac{19±5}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{19±5}{6} when ± is plus. Add 19 to 5.
x=4
Divide 24 by 6.
x=\frac{14}{6}
Now solve the equation x=\frac{19±5}{6} when ± is minus. Subtract 5 from 19.
x=\frac{7}{3}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
3x^{2}-19x+28=3\left(x-4\right)\left(x-\frac{7}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and \frac{7}{3} for x_{2}.
3x^{2}-19x+28=3\left(x-4\right)\times \frac{3x-7}{3}
Subtract \frac{7}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}-19x+28=\left(x-4\right)\left(3x-7\right)
Cancel out 3, the greatest common factor in 3 and 3.
x ^ 2 -\frac{19}{3}x +\frac{28}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = \frac{19}{3} rs = \frac{28}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{19}{6} - u s = \frac{19}{6} + u
Two numbers r and s sum up to \frac{19}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{19}{3} = \frac{19}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{19}{6} - u) (\frac{19}{6} + u) = \frac{28}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{28}{3}
\frac{361}{36} - u^2 = \frac{28}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{28}{3}-\frac{361}{36} = -\frac{25}{36}
Simplify the expression by subtracting \frac{361}{36} on both sides
u^2 = \frac{25}{36} u = \pm\sqrt{\frac{25}{36}} = \pm \frac{5}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{19}{6} - \frac{5}{6} = 2.333 s = \frac{19}{6} + \frac{5}{6} = 4.000
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}