Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-18x+11=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-18x+11-6=6-6
Subtract 6 from both sides of the equation.
3x^{2}-18x+11-6=0
Subtracting 6 from itself leaves 0.
3x^{2}-18x+5=0
Subtract 6 from 11.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 5}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -18 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 3\times 5}}{2\times 3}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-12\times 5}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-18\right)±\sqrt{324-60}}{2\times 3}
Multiply -12 times 5.
x=\frac{-\left(-18\right)±\sqrt{264}}{2\times 3}
Add 324 to -60.
x=\frac{-\left(-18\right)±2\sqrt{66}}{2\times 3}
Take the square root of 264.
x=\frac{18±2\sqrt{66}}{2\times 3}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{66}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{66}+18}{6}
Now solve the equation x=\frac{18±2\sqrt{66}}{6} when ± is plus. Add 18 to 2\sqrt{66}.
x=\frac{\sqrt{66}}{3}+3
Divide 18+2\sqrt{66} by 6.
x=\frac{18-2\sqrt{66}}{6}
Now solve the equation x=\frac{18±2\sqrt{66}}{6} when ± is minus. Subtract 2\sqrt{66} from 18.
x=-\frac{\sqrt{66}}{3}+3
Divide 18-2\sqrt{66} by 6.
x=\frac{\sqrt{66}}{3}+3 x=-\frac{\sqrt{66}}{3}+3
The equation is now solved.
3x^{2}-18x+11=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-18x+11-11=6-11
Subtract 11 from both sides of the equation.
3x^{2}-18x=6-11
Subtracting 11 from itself leaves 0.
3x^{2}-18x=-5
Subtract 11 from 6.
\frac{3x^{2}-18x}{3}=-\frac{5}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{18}{3}\right)x=-\frac{5}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-6x=-\frac{5}{3}
Divide -18 by 3.
x^{2}-6x+\left(-3\right)^{2}=-\frac{5}{3}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{5}{3}+9
Square -3.
x^{2}-6x+9=\frac{22}{3}
Add -\frac{5}{3} to 9.
\left(x-3\right)^{2}=\frac{22}{3}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{22}{3}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{66}}{3} x-3=-\frac{\sqrt{66}}{3}
Simplify.
x=\frac{\sqrt{66}}{3}+3 x=-\frac{\sqrt{66}}{3}+3
Add 3 to both sides of the equation.