Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{x}{5}-\frac{N}{15x}-\frac{1}{15}+\frac{2}{5x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&N=6\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{x}{5}-\frac{N}{15x}-\frac{1}{15}+\frac{2}{5x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&N=6\text{ and }x=0\end{matrix}\right.
Solve for N
N=3x^{2}-15ax-x+6
Graph
Share
Copied to clipboard
-15xa-x+6=N-3x^{2}
Subtract 3x^{2} from both sides.
-15xa+6=N-3x^{2}+x
Add x to both sides.
-15xa=N-3x^{2}+x-6
Subtract 6 from both sides.
\left(-15x\right)a=-3x^{2}+x+N-6
The equation is in standard form.
\frac{\left(-15x\right)a}{-15x}=\frac{-3x^{2}+x+N-6}{-15x}
Divide both sides by -15x.
a=\frac{-3x^{2}+x+N-6}{-15x}
Dividing by -15x undoes the multiplication by -15x.
a=-\frac{-3x^{2}+x+N-6}{15x}
Divide N-3x^{2}+x-6 by -15x.
-15xa-x+6=N-3x^{2}
Subtract 3x^{2} from both sides.
-15xa+6=N-3x^{2}+x
Add x to both sides.
-15xa=N-3x^{2}+x-6
Subtract 6 from both sides.
\left(-15x\right)a=-3x^{2}+x+N-6
The equation is in standard form.
\frac{\left(-15x\right)a}{-15x}=\frac{-3x^{2}+x+N-6}{-15x}
Divide both sides by -15x.
a=\frac{-3x^{2}+x+N-6}{-15x}
Dividing by -15x undoes the multiplication by -15x.
a=-\frac{-3x^{2}+x+N-6}{15x}
Divide N-3x^{2}+x-6 by -15x.
N=3x^{2}-15xa-x+6
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}