Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-5x-6\right)
Factor out 3.
a+b=-5 ab=1\left(-6\right)=-6
Consider x^{2}-5x-6. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-6 b=1
The solution is the pair that gives sum -5.
\left(x^{2}-6x\right)+\left(x-6\right)
Rewrite x^{2}-5x-6 as \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
Factor out x in x^{2}-6x.
\left(x-6\right)\left(x+1\right)
Factor out common term x-6 by using distributive property.
3\left(x-6\right)\left(x+1\right)
Rewrite the complete factored expression.
3x^{2}-15x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-18\right)}}{2\times 3}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-18\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-15\right)±\sqrt{225+216}}{2\times 3}
Multiply -12 times -18.
x=\frac{-\left(-15\right)±\sqrt{441}}{2\times 3}
Add 225 to 216.
x=\frac{-\left(-15\right)±21}{2\times 3}
Take the square root of 441.
x=\frac{15±21}{2\times 3}
The opposite of -15 is 15.
x=\frac{15±21}{6}
Multiply 2 times 3.
x=\frac{36}{6}
Now solve the equation x=\frac{15±21}{6} when ± is plus. Add 15 to 21.
x=6
Divide 36 by 6.
x=-\frac{6}{6}
Now solve the equation x=\frac{15±21}{6} when ± is minus. Subtract 21 from 15.
x=-1
Divide -6 by 6.
3x^{2}-15x-18=3\left(x-6\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and -1 for x_{2}.
3x^{2}-15x-18=3\left(x-6\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 -5x -6 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = 5 rs = -6
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{2} - u s = \frac{5}{2} + u
Two numbers r and s sum up to 5 exactly when the average of the two numbers is \frac{1}{2}*5 = \frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{2} - u) (\frac{5}{2} + u) = -6
To solve for unknown quantity u, substitute these in the product equation rs = -6
\frac{25}{4} - u^2 = -6
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -6-\frac{25}{4} = -\frac{49}{4}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{49}{4} u = \pm\sqrt{\frac{49}{4}} = \pm \frac{7}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{2} - \frac{7}{2} = -1 s = \frac{5}{2} + \frac{7}{2} = 6
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.