Solve for x
x=-\frac{2}{3}\approx -0.666666667
x=\frac{3}{5}=0.6
Graph
Share
Copied to clipboard
3x^{2}-1=\frac{1}{5}-\frac{1}{5}x
Use the distributive property to multiply \frac{1}{5} by 1-x.
3x^{2}-1-\frac{1}{5}=-\frac{1}{5}x
Subtract \frac{1}{5} from both sides.
3x^{2}-\frac{6}{5}=-\frac{1}{5}x
Subtract \frac{1}{5} from -1 to get -\frac{6}{5}.
3x^{2}-\frac{6}{5}+\frac{1}{5}x=0
Add \frac{1}{5}x to both sides.
3x^{2}+\frac{1}{5}x-\frac{6}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{5}±\sqrt{\left(\frac{1}{5}\right)^{2}-4\times 3\left(-\frac{6}{5}\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, \frac{1}{5} for b, and -\frac{6}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{5}±\sqrt{\frac{1}{25}-4\times 3\left(-\frac{6}{5}\right)}}{2\times 3}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{5}±\sqrt{\frac{1}{25}-12\left(-\frac{6}{5}\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\frac{1}{5}±\sqrt{\frac{1}{25}+\frac{72}{5}}}{2\times 3}
Multiply -12 times -\frac{6}{5}.
x=\frac{-\frac{1}{5}±\sqrt{\frac{361}{25}}}{2\times 3}
Add \frac{1}{25} to \frac{72}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{5}±\frac{19}{5}}{2\times 3}
Take the square root of \frac{361}{25}.
x=\frac{-\frac{1}{5}±\frac{19}{5}}{6}
Multiply 2 times 3.
x=\frac{\frac{18}{5}}{6}
Now solve the equation x=\frac{-\frac{1}{5}±\frac{19}{5}}{6} when ± is plus. Add -\frac{1}{5} to \frac{19}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{5}
Divide \frac{18}{5} by 6.
x=-\frac{4}{6}
Now solve the equation x=\frac{-\frac{1}{5}±\frac{19}{5}}{6} when ± is minus. Subtract \frac{19}{5} from -\frac{1}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
x=\frac{3}{5} x=-\frac{2}{3}
The equation is now solved.
3x^{2}-1=\frac{1}{5}-\frac{1}{5}x
Use the distributive property to multiply \frac{1}{5} by 1-x.
3x^{2}-1+\frac{1}{5}x=\frac{1}{5}
Add \frac{1}{5}x to both sides.
3x^{2}+\frac{1}{5}x=\frac{1}{5}+1
Add 1 to both sides.
3x^{2}+\frac{1}{5}x=\frac{6}{5}
Add \frac{1}{5} and 1 to get \frac{6}{5}.
\frac{3x^{2}+\frac{1}{5}x}{3}=\frac{\frac{6}{5}}{3}
Divide both sides by 3.
x^{2}+\frac{\frac{1}{5}}{3}x=\frac{\frac{6}{5}}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{1}{15}x=\frac{\frac{6}{5}}{3}
Divide \frac{1}{5} by 3.
x^{2}+\frac{1}{15}x=\frac{2}{5}
Divide \frac{6}{5} by 3.
x^{2}+\frac{1}{15}x+\left(\frac{1}{30}\right)^{2}=\frac{2}{5}+\left(\frac{1}{30}\right)^{2}
Divide \frac{1}{15}, the coefficient of the x term, by 2 to get \frac{1}{30}. Then add the square of \frac{1}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{15}x+\frac{1}{900}=\frac{2}{5}+\frac{1}{900}
Square \frac{1}{30} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{15}x+\frac{1}{900}=\frac{361}{900}
Add \frac{2}{5} to \frac{1}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{30}\right)^{2}=\frac{361}{900}
Factor x^{2}+\frac{1}{15}x+\frac{1}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{30}\right)^{2}}=\sqrt{\frac{361}{900}}
Take the square root of both sides of the equation.
x+\frac{1}{30}=\frac{19}{30} x+\frac{1}{30}=-\frac{19}{30}
Simplify.
x=\frac{3}{5} x=-\frac{2}{3}
Subtract \frac{1}{30} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}