Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-10x=4
Subtract 10x from both sides.
3x^{2}-10x-4=0
Subtract 4 from both sides.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-4\right)}}{2\times 3}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-12\left(-4\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-10\right)±\sqrt{100+48}}{2\times 3}
Multiply -12 times -4.
x=\frac{-\left(-10\right)±\sqrt{148}}{2\times 3}
Add 100 to 48.
x=\frac{-\left(-10\right)±2\sqrt{37}}{2\times 3}
Take the square root of 148.
x=\frac{10±2\sqrt{37}}{2\times 3}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{37}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{37}+10}{6}
Now solve the equation x=\frac{10±2\sqrt{37}}{6} when ± is plus. Add 10 to 2\sqrt{37}.
x=\frac{\sqrt{37}+5}{3}
Divide 10+2\sqrt{37} by 6.
x=\frac{10-2\sqrt{37}}{6}
Now solve the equation x=\frac{10±2\sqrt{37}}{6} when ± is minus. Subtract 2\sqrt{37} from 10.
x=\frac{5-\sqrt{37}}{3}
Divide 10-2\sqrt{37} by 6.
x=\frac{\sqrt{37}+5}{3} x=\frac{5-\sqrt{37}}{3}
The equation is now solved.
3x^{2}-10x=4
Subtract 10x from both sides.
\frac{3x^{2}-10x}{3}=\frac{4}{3}
Divide both sides by 3.
x^{2}-\frac{10}{3}x=\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{4}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{37}{9}
Add \frac{4}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{3}\right)^{2}=\frac{37}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{37}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{\sqrt{37}}{3} x-\frac{5}{3}=-\frac{\sqrt{37}}{3}
Simplify.
x=\frac{\sqrt{37}+5}{3} x=\frac{5-\sqrt{37}}{3}
Add \frac{5}{3} to both sides of the equation.