Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{5+b-12x}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&x=0\text{ and }b=-5\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{5+b-12x}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }b=-5\end{matrix}\right.
Solve for b
b=ax+12x-5
Graph
Share
Copied to clipboard
3x^{2}+ax+7=3\left(x^{2}-4x+4\right)+b
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}+ax+7=3x^{2}-12x+12+b
Use the distributive property to multiply 3 by x^{2}-4x+4.
ax+7=3x^{2}-12x+12+b-3x^{2}
Subtract 3x^{2} from both sides.
ax+7=-12x+12+b
Combine 3x^{2} and -3x^{2} to get 0.
ax=-12x+12+b-7
Subtract 7 from both sides.
ax=-12x+5+b
Subtract 7 from 12 to get 5.
xa=5+b-12x
The equation is in standard form.
\frac{xa}{x}=\frac{5+b-12x}{x}
Divide both sides by x.
a=\frac{5+b-12x}{x}
Dividing by x undoes the multiplication by x.
3x^{2}+ax+7=3\left(x^{2}-4x+4\right)+b
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}+ax+7=3x^{2}-12x+12+b
Use the distributive property to multiply 3 by x^{2}-4x+4.
ax+7=3x^{2}-12x+12+b-3x^{2}
Subtract 3x^{2} from both sides.
ax+7=-12x+12+b
Combine 3x^{2} and -3x^{2} to get 0.
ax=-12x+12+b-7
Subtract 7 from both sides.
ax=-12x+5+b
Subtract 7 from 12 to get 5.
xa=5+b-12x
The equation is in standard form.
\frac{xa}{x}=\frac{5+b-12x}{x}
Divide both sides by x.
a=\frac{5+b-12x}{x}
Dividing by x undoes the multiplication by x.
3x^{2}+ax+7=3\left(x^{2}-4x+4\right)+b
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}+ax+7=3x^{2}-12x+12+b
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-12x+12+b=3x^{2}+ax+7
Swap sides so that all variable terms are on the left hand side.
-12x+12+b=3x^{2}+ax+7-3x^{2}
Subtract 3x^{2} from both sides.
-12x+12+b=ax+7
Combine 3x^{2} and -3x^{2} to get 0.
12+b=ax+7+12x
Add 12x to both sides.
b=ax+7+12x-12
Subtract 12 from both sides.
b=ax-5+12x
Subtract 12 from 7 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}