Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+9x+2=5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+9x+2-5=5-5
Subtract 5 from both sides of the equation.
3x^{2}+9x+2-5=0
Subtracting 5 from itself leaves 0.
3x^{2}+9x-3=0
Subtract 5 from 2.
x=\frac{-9±\sqrt{9^{2}-4\times 3\left(-3\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 9 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 3\left(-3\right)}}{2\times 3}
Square 9.
x=\frac{-9±\sqrt{81-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-9±\sqrt{81+36}}{2\times 3}
Multiply -12 times -3.
x=\frac{-9±\sqrt{117}}{2\times 3}
Add 81 to 36.
x=\frac{-9±3\sqrt{13}}{2\times 3}
Take the square root of 117.
x=\frac{-9±3\sqrt{13}}{6}
Multiply 2 times 3.
x=\frac{3\sqrt{13}-9}{6}
Now solve the equation x=\frac{-9±3\sqrt{13}}{6} when ± is plus. Add -9 to 3\sqrt{13}.
x=\frac{\sqrt{13}-3}{2}
Divide -9+3\sqrt{13} by 6.
x=\frac{-3\sqrt{13}-9}{6}
Now solve the equation x=\frac{-9±3\sqrt{13}}{6} when ± is minus. Subtract 3\sqrt{13} from -9.
x=\frac{-\sqrt{13}-3}{2}
Divide -9-3\sqrt{13} by 6.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
The equation is now solved.
3x^{2}+9x+2=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+9x+2-2=5-2
Subtract 2 from both sides of the equation.
3x^{2}+9x=5-2
Subtracting 2 from itself leaves 0.
3x^{2}+9x=3
Subtract 2 from 5.
\frac{3x^{2}+9x}{3}=\frac{3}{3}
Divide both sides by 3.
x^{2}+\frac{9}{3}x=\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+3x=\frac{3}{3}
Divide 9 by 3.
x^{2}+3x=1
Divide 3 by 3.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=1+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=1+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{13}{4}
Add 1 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{13}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{13}}{2} x+\frac{3}{2}=-\frac{\sqrt{13}}{2}
Simplify.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.