Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-5\sqrt{2}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
3x^{2}=-8+5\sqrt{2}
Add 5\sqrt{2} to both sides.
x^{2}=\frac{5\sqrt{2}-8}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{i\sqrt{24-15\sqrt{2}}}{3} x=-\frac{i\sqrt{24-15\sqrt{2}}}{3}
Take the square root of both sides of the equation.
3x^{2}+8-5\sqrt{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(8-5\sqrt{2}\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and 8-5\sqrt{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(8-5\sqrt{2}\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(8-5\sqrt{2}\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{60\sqrt{2}-96}}{2\times 3}
Multiply -12 times 8-5\sqrt{2}.
x=\frac{0±2i\sqrt{24-15\sqrt{2}}}{2\times 3}
Take the square root of -96+60\sqrt{2}.
x=\frac{0±2i\sqrt{24-15\sqrt{2}}}{6}
Multiply 2 times 3.
x=\frac{i\sqrt{24-15\sqrt{2}}}{3}
Now solve the equation x=\frac{0±2i\sqrt{24-15\sqrt{2}}}{6} when ± is plus.
x=-\frac{i\sqrt{24-15\sqrt{2}}}{3}
Now solve the equation x=\frac{0±2i\sqrt{24-15\sqrt{2}}}{6} when ± is minus.
x=\frac{i\sqrt{24-15\sqrt{2}}}{3} x=-\frac{i\sqrt{24-15\sqrt{2}}}{3}
The equation is now solved.