Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+7x-13=-x
Subtract 13 from both sides.
3x^{2}+7x-13+x=0
Add x to both sides.
3x^{2}+8x-13=0
Combine 7x and x to get 8x.
x=\frac{-8±\sqrt{8^{2}-4\times 3\left(-13\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 8 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 3\left(-13\right)}}{2\times 3}
Square 8.
x=\frac{-8±\sqrt{64-12\left(-13\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-8±\sqrt{64+156}}{2\times 3}
Multiply -12 times -13.
x=\frac{-8±\sqrt{220}}{2\times 3}
Add 64 to 156.
x=\frac{-8±2\sqrt{55}}{2\times 3}
Take the square root of 220.
x=\frac{-8±2\sqrt{55}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{55}-8}{6}
Now solve the equation x=\frac{-8±2\sqrt{55}}{6} when ± is plus. Add -8 to 2\sqrt{55}.
x=\frac{\sqrt{55}-4}{3}
Divide -8+2\sqrt{55} by 6.
x=\frac{-2\sqrt{55}-8}{6}
Now solve the equation x=\frac{-8±2\sqrt{55}}{6} when ± is minus. Subtract 2\sqrt{55} from -8.
x=\frac{-\sqrt{55}-4}{3}
Divide -8-2\sqrt{55} by 6.
x=\frac{\sqrt{55}-4}{3} x=\frac{-\sqrt{55}-4}{3}
The equation is now solved.
3x^{2}+7x+x=13
Add x to both sides.
3x^{2}+8x=13
Combine 7x and x to get 8x.
\frac{3x^{2}+8x}{3}=\frac{13}{3}
Divide both sides by 3.
x^{2}+\frac{8}{3}x=\frac{13}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\frac{13}{3}+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{13}{3}+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{55}{9}
Add \frac{13}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{3}\right)^{2}=\frac{55}{9}
Factor x^{2}+\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{55}{9}}
Take the square root of both sides of the equation.
x+\frac{4}{3}=\frac{\sqrt{55}}{3} x+\frac{4}{3}=-\frac{\sqrt{55}}{3}
Simplify.
x=\frac{\sqrt{55}-4}{3} x=\frac{-\sqrt{55}-4}{3}
Subtract \frac{4}{3} from both sides of the equation.