Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+3x+9=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+3x+9-6=6-6
Subtract 6 from both sides of the equation.
3x^{2}+3x+9-6=0
Subtracting 6 from itself leaves 0.
3x^{2}+3x+3=0
Subtract 6 from 9.
x=\frac{-3±\sqrt{3^{2}-4\times 3\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 3 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 3\times 3}}{2\times 3}
Square 3.
x=\frac{-3±\sqrt{9-12\times 3}}{2\times 3}
Multiply -4 times 3.
x=\frac{-3±\sqrt{9-36}}{2\times 3}
Multiply -12 times 3.
x=\frac{-3±\sqrt{-27}}{2\times 3}
Add 9 to -36.
x=\frac{-3±3\sqrt{3}i}{2\times 3}
Take the square root of -27.
x=\frac{-3±3\sqrt{3}i}{6}
Multiply 2 times 3.
x=\frac{-3+3\sqrt{3}i}{6}
Now solve the equation x=\frac{-3±3\sqrt{3}i}{6} when ± is plus. Add -3 to 3i\sqrt{3}.
x=\frac{-1+\sqrt{3}i}{2}
Divide -3+3i\sqrt{3} by 6.
x=\frac{-3\sqrt{3}i-3}{6}
Now solve the equation x=\frac{-3±3\sqrt{3}i}{6} when ± is minus. Subtract 3i\sqrt{3} from -3.
x=\frac{-\sqrt{3}i-1}{2}
Divide -3-3i\sqrt{3} by 6.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
The equation is now solved.
3x^{2}+3x+9=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+3x+9-9=6-9
Subtract 9 from both sides of the equation.
3x^{2}+3x=6-9
Subtracting 9 from itself leaves 0.
3x^{2}+3x=-3
Subtract 9 from 6.
\frac{3x^{2}+3x}{3}=-\frac{3}{3}
Divide both sides by 3.
x^{2}+\frac{3}{3}x=-\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+x=-\frac{3}{3}
Divide 3 by 3.
x^{2}+x=-1
Divide -3 by 3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
Add -1 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.