Solve for x
x=\frac{\sqrt{10}-8}{3}\approx -1.612574113
x=\frac{-\sqrt{10}-8}{3}\approx -3.72075922
Graph
Share
Copied to clipboard
3x^{2}+16x=-18
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+16x-\left(-18\right)=-18-\left(-18\right)
Add 18 to both sides of the equation.
3x^{2}+16x-\left(-18\right)=0
Subtracting -18 from itself leaves 0.
3x^{2}+16x+18=0
Subtract -18 from 0.
x=\frac{-16±\sqrt{16^{2}-4\times 3\times 18}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 16 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 3\times 18}}{2\times 3}
Square 16.
x=\frac{-16±\sqrt{256-12\times 18}}{2\times 3}
Multiply -4 times 3.
x=\frac{-16±\sqrt{256-216}}{2\times 3}
Multiply -12 times 18.
x=\frac{-16±\sqrt{40}}{2\times 3}
Add 256 to -216.
x=\frac{-16±2\sqrt{10}}{2\times 3}
Take the square root of 40.
x=\frac{-16±2\sqrt{10}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{10}-16}{6}
Now solve the equation x=\frac{-16±2\sqrt{10}}{6} when ± is plus. Add -16 to 2\sqrt{10}.
x=\frac{\sqrt{10}-8}{3}
Divide -16+2\sqrt{10} by 6.
x=\frac{-2\sqrt{10}-16}{6}
Now solve the equation x=\frac{-16±2\sqrt{10}}{6} when ± is minus. Subtract 2\sqrt{10} from -16.
x=\frac{-\sqrt{10}-8}{3}
Divide -16-2\sqrt{10} by 6.
x=\frac{\sqrt{10}-8}{3} x=\frac{-\sqrt{10}-8}{3}
The equation is now solved.
3x^{2}+16x=-18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+16x}{3}=-\frac{18}{3}
Divide both sides by 3.
x^{2}+\frac{16}{3}x=-\frac{18}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{16}{3}x=-6
Divide -18 by 3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=-6+\left(\frac{8}{3}\right)^{2}
Divide \frac{16}{3}, the coefficient of the x term, by 2 to get \frac{8}{3}. Then add the square of \frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{3}x+\frac{64}{9}=-6+\frac{64}{9}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{10}{9}
Add -6 to \frac{64}{9}.
\left(x+\frac{8}{3}\right)^{2}=\frac{10}{9}
Factor x^{2}+\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Take the square root of both sides of the equation.
x+\frac{8}{3}=\frac{\sqrt{10}}{3} x+\frac{8}{3}=-\frac{\sqrt{10}}{3}
Simplify.
x=\frac{\sqrt{10}-8}{3} x=\frac{-\sqrt{10}-8}{3}
Subtract \frac{8}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}