Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+10x-1-2x^{2}=4x+15.3
Subtract 2x^{2} from both sides.
x^{2}+10x-1=4x+15.3
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+10x-1-4x=15.3
Subtract 4x from both sides.
x^{2}+6x-1=15.3
Combine 10x and -4x to get 6x.
x^{2}+6x-1-15.3=0
Subtract 15.3 from both sides.
x^{2}+6x-16.3=0
Subtract 15.3 from -1 to get -16.3.
x=\frac{-6±\sqrt{6^{2}-4\left(-16.3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -16.3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-16.3\right)}}{2}
Square 6.
x=\frac{-6±\sqrt{36+65.2}}{2}
Multiply -4 times -16.3.
x=\frac{-6±\sqrt{101.2}}{2}
Add 36 to 65.2.
x=\frac{-6±\frac{\sqrt{2530}}{5}}{2}
Take the square root of 101.2.
x=\frac{\frac{\sqrt{2530}}{5}-6}{2}
Now solve the equation x=\frac{-6±\frac{\sqrt{2530}}{5}}{2} when ± is plus. Add -6 to \frac{\sqrt{2530}}{5}.
x=\frac{\sqrt{2530}}{10}-3
Divide -6+\frac{\sqrt{2530}}{5} by 2.
x=\frac{-\frac{\sqrt{2530}}{5}-6}{2}
Now solve the equation x=\frac{-6±\frac{\sqrt{2530}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{2530}}{5} from -6.
x=-\frac{\sqrt{2530}}{10}-3
Divide -6-\frac{\sqrt{2530}}{5} by 2.
x=\frac{\sqrt{2530}}{10}-3 x=-\frac{\sqrt{2530}}{10}-3
The equation is now solved.
3x^{2}+10x-1-2x^{2}=4x+15.3
Subtract 2x^{2} from both sides.
x^{2}+10x-1=4x+15.3
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+10x-1-4x=15.3
Subtract 4x from both sides.
x^{2}+6x-1=15.3
Combine 10x and -4x to get 6x.
x^{2}+6x=15.3+1
Add 1 to both sides.
x^{2}+6x=16.3
Add 15.3 and 1 to get 16.3.
x^{2}+6x+3^{2}=16.3+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=16.3+9
Square 3.
x^{2}+6x+9=25.3
Add 16.3 to 9.
\left(x+3\right)^{2}=25.3
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{25.3}
Take the square root of both sides of the equation.
x+3=\frac{\sqrt{2530}}{10} x+3=-\frac{\sqrt{2530}}{10}
Simplify.
x=\frac{\sqrt{2530}}{10}-3 x=-\frac{\sqrt{2530}}{10}-3
Subtract 3 from both sides of the equation.