Solve for x
x=\frac{\sqrt{89}-7}{20}\approx 0.121699057
x=\frac{-\sqrt{89}-7}{20}\approx -0.821699057
Graph
Share
Copied to clipboard
3x^{2}+1-7x-13x^{2}=0
Subtract 13x^{2} from both sides.
-10x^{2}+1-7x=0
Combine 3x^{2} and -13x^{2} to get -10x^{2}.
-10x^{2}-7x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-10\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, -7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-10\right)}}{2\left(-10\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+40}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-\left(-7\right)±\sqrt{89}}{2\left(-10\right)}
Add 49 to 40.
x=\frac{7±\sqrt{89}}{2\left(-10\right)}
The opposite of -7 is 7.
x=\frac{7±\sqrt{89}}{-20}
Multiply 2 times -10.
x=\frac{\sqrt{89}+7}{-20}
Now solve the equation x=\frac{7±\sqrt{89}}{-20} when ± is plus. Add 7 to \sqrt{89}.
x=\frac{-\sqrt{89}-7}{20}
Divide 7+\sqrt{89} by -20.
x=\frac{7-\sqrt{89}}{-20}
Now solve the equation x=\frac{7±\sqrt{89}}{-20} when ± is minus. Subtract \sqrt{89} from 7.
x=\frac{\sqrt{89}-7}{20}
Divide 7-\sqrt{89} by -20.
x=\frac{-\sqrt{89}-7}{20} x=\frac{\sqrt{89}-7}{20}
The equation is now solved.
3x^{2}+1-7x-13x^{2}=0
Subtract 13x^{2} from both sides.
-10x^{2}+1-7x=0
Combine 3x^{2} and -13x^{2} to get -10x^{2}.
-10x^{2}-7x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{-10x^{2}-7x}{-10}=-\frac{1}{-10}
Divide both sides by -10.
x^{2}+\left(-\frac{7}{-10}\right)x=-\frac{1}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}+\frac{7}{10}x=-\frac{1}{-10}
Divide -7 by -10.
x^{2}+\frac{7}{10}x=\frac{1}{10}
Divide -1 by -10.
x^{2}+\frac{7}{10}x+\left(\frac{7}{20}\right)^{2}=\frac{1}{10}+\left(\frac{7}{20}\right)^{2}
Divide \frac{7}{10}, the coefficient of the x term, by 2 to get \frac{7}{20}. Then add the square of \frac{7}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{10}x+\frac{49}{400}=\frac{1}{10}+\frac{49}{400}
Square \frac{7}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{10}x+\frac{49}{400}=\frac{89}{400}
Add \frac{1}{10} to \frac{49}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{20}\right)^{2}=\frac{89}{400}
Factor x^{2}+\frac{7}{10}x+\frac{49}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{20}\right)^{2}}=\sqrt{\frac{89}{400}}
Take the square root of both sides of the equation.
x+\frac{7}{20}=\frac{\sqrt{89}}{20} x+\frac{7}{20}=-\frac{\sqrt{89}}{20}
Simplify.
x=\frac{\sqrt{89}-7}{20} x=\frac{-\sqrt{89}-7}{20}
Subtract \frac{7}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}