Solve for x
x = \frac{\sqrt{19} + 1}{3} \approx 1.786299648
x=\frac{1-\sqrt{19}}{3}\approx -1.119632981
Graph
Share
Copied to clipboard
3x^{2}+1-2x=7
Subtract 2x from both sides.
3x^{2}+1-2x-7=0
Subtract 7 from both sides.
3x^{2}-6-2x=0
Subtract 7 from 1 to get -6.
3x^{2}-2x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-6\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -2 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-6\right)}}{2\times 3}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-6\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-2\right)±\sqrt{4+72}}{2\times 3}
Multiply -12 times -6.
x=\frac{-\left(-2\right)±\sqrt{76}}{2\times 3}
Add 4 to 72.
x=\frac{-\left(-2\right)±2\sqrt{19}}{2\times 3}
Take the square root of 76.
x=\frac{2±2\sqrt{19}}{2\times 3}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{19}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{19}+2}{6}
Now solve the equation x=\frac{2±2\sqrt{19}}{6} when ± is plus. Add 2 to 2\sqrt{19}.
x=\frac{\sqrt{19}+1}{3}
Divide 2+2\sqrt{19} by 6.
x=\frac{2-2\sqrt{19}}{6}
Now solve the equation x=\frac{2±2\sqrt{19}}{6} when ± is minus. Subtract 2\sqrt{19} from 2.
x=\frac{1-\sqrt{19}}{3}
Divide 2-2\sqrt{19} by 6.
x=\frac{\sqrt{19}+1}{3} x=\frac{1-\sqrt{19}}{3}
The equation is now solved.
3x^{2}+1-2x=7
Subtract 2x from both sides.
3x^{2}-2x=7-1
Subtract 1 from both sides.
3x^{2}-2x=6
Subtract 1 from 7 to get 6.
\frac{3x^{2}-2x}{3}=\frac{6}{3}
Divide both sides by 3.
x^{2}-\frac{2}{3}x=\frac{6}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{2}{3}x=2
Divide 6 by 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=2+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=2+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{19}{9}
Add 2 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{19}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{19}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{19}}{3} x-\frac{1}{3}=-\frac{\sqrt{19}}{3}
Simplify.
x=\frac{\sqrt{19}+1}{3} x=\frac{1-\sqrt{19}}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}