Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-4x^{2}=16
Subtract 4x^{2} from both sides.
3x-4x^{2}-16=0
Subtract 16 from both sides.
-4x^{2}+3x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 3 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
Square 3.
x=\frac{-3±\sqrt{9+16\left(-16\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-3±\sqrt{9-256}}{2\left(-4\right)}
Multiply 16 times -16.
x=\frac{-3±\sqrt{-247}}{2\left(-4\right)}
Add 9 to -256.
x=\frac{-3±\sqrt{247}i}{2\left(-4\right)}
Take the square root of -247.
x=\frac{-3±\sqrt{247}i}{-8}
Multiply 2 times -4.
x=\frac{-3+\sqrt{247}i}{-8}
Now solve the equation x=\frac{-3±\sqrt{247}i}{-8} when ± is plus. Add -3 to i\sqrt{247}.
x=\frac{-\sqrt{247}i+3}{8}
Divide -3+i\sqrt{247} by -8.
x=\frac{-\sqrt{247}i-3}{-8}
Now solve the equation x=\frac{-3±\sqrt{247}i}{-8} when ± is minus. Subtract i\sqrt{247} from -3.
x=\frac{3+\sqrt{247}i}{8}
Divide -3-i\sqrt{247} by -8.
x=\frac{-\sqrt{247}i+3}{8} x=\frac{3+\sqrt{247}i}{8}
The equation is now solved.
3x-4x^{2}=16
Subtract 4x^{2} from both sides.
-4x^{2}+3x=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+3x}{-4}=\frac{16}{-4}
Divide both sides by -4.
x^{2}+\frac{3}{-4}x=\frac{16}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{3}{4}x=\frac{16}{-4}
Divide 3 by -4.
x^{2}-\frac{3}{4}x=-4
Divide 16 by -4.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=-4+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-4+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{247}{64}
Add -4 to \frac{9}{64}.
\left(x-\frac{3}{8}\right)^{2}=-\frac{247}{64}
Factor x^{2}-\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{-\frac{247}{64}}
Take the square root of both sides of the equation.
x-\frac{3}{8}=\frac{\sqrt{247}i}{8} x-\frac{3}{8}=-\frac{\sqrt{247}i}{8}
Simplify.
x=\frac{3+\sqrt{247}i}{8} x=\frac{-\sqrt{247}i+3}{8}
Add \frac{3}{8} to both sides of the equation.