Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-16=\sqrt{x}
Subtract 16 from both sides of the equation.
\left(3x-16\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
9x^{2}-96x+256=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-16\right)^{2}.
9x^{2}-96x+256=x
Calculate \sqrt{x} to the power of 2 and get x.
9x^{2}-96x+256-x=0
Subtract x from both sides.
9x^{2}-97x+256=0
Combine -96x and -x to get -97x.
x=\frac{-\left(-97\right)±\sqrt{\left(-97\right)^{2}-4\times 9\times 256}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -97 for b, and 256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-97\right)±\sqrt{9409-4\times 9\times 256}}{2\times 9}
Square -97.
x=\frac{-\left(-97\right)±\sqrt{9409-36\times 256}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-97\right)±\sqrt{9409-9216}}{2\times 9}
Multiply -36 times 256.
x=\frac{-\left(-97\right)±\sqrt{193}}{2\times 9}
Add 9409 to -9216.
x=\frac{97±\sqrt{193}}{2\times 9}
The opposite of -97 is 97.
x=\frac{97±\sqrt{193}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{193}+97}{18}
Now solve the equation x=\frac{97±\sqrt{193}}{18} when ± is plus. Add 97 to \sqrt{193}.
x=\frac{97-\sqrt{193}}{18}
Now solve the equation x=\frac{97±\sqrt{193}}{18} when ± is minus. Subtract \sqrt{193} from 97.
x=\frac{\sqrt{193}+97}{18} x=\frac{97-\sqrt{193}}{18}
The equation is now solved.
3\times \frac{\sqrt{193}+97}{18}=16+\sqrt{\frac{\sqrt{193}+97}{18}}
Substitute \frac{\sqrt{193}+97}{18} for x in the equation 3x=16+\sqrt{x}.
\frac{1}{6}\times 193^{\frac{1}{2}}+\frac{97}{6}=\frac{97}{6}+\frac{1}{6}\times 193^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{193}+97}{18} satisfies the equation.
3\times \frac{97-\sqrt{193}}{18}=16+\sqrt{\frac{97-\sqrt{193}}{18}}
Substitute \frac{97-\sqrt{193}}{18} for x in the equation 3x=16+\sqrt{x}.
\frac{97}{6}-\frac{1}{6}\times 193^{\frac{1}{2}}=\frac{95}{6}+\frac{1}{6}\times 193^{\frac{1}{2}}
Simplify. The value x=\frac{97-\sqrt{193}}{18} does not satisfy the equation.
x=\frac{\sqrt{193}+97}{18}
Equation 3x-16=\sqrt{x} has a unique solution.