Solve for x
x = \frac{\sqrt{193} + 97}{18} \approx 6.160691333
Graph
Share
Copied to clipboard
3x-16=\sqrt{x}
Subtract 16 from both sides of the equation.
\left(3x-16\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
9x^{2}-96x+256=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-16\right)^{2}.
9x^{2}-96x+256=x
Calculate \sqrt{x} to the power of 2 and get x.
9x^{2}-96x+256-x=0
Subtract x from both sides.
9x^{2}-97x+256=0
Combine -96x and -x to get -97x.
x=\frac{-\left(-97\right)±\sqrt{\left(-97\right)^{2}-4\times 9\times 256}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -97 for b, and 256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-97\right)±\sqrt{9409-4\times 9\times 256}}{2\times 9}
Square -97.
x=\frac{-\left(-97\right)±\sqrt{9409-36\times 256}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-97\right)±\sqrt{9409-9216}}{2\times 9}
Multiply -36 times 256.
x=\frac{-\left(-97\right)±\sqrt{193}}{2\times 9}
Add 9409 to -9216.
x=\frac{97±\sqrt{193}}{2\times 9}
The opposite of -97 is 97.
x=\frac{97±\sqrt{193}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{193}+97}{18}
Now solve the equation x=\frac{97±\sqrt{193}}{18} when ± is plus. Add 97 to \sqrt{193}.
x=\frac{97-\sqrt{193}}{18}
Now solve the equation x=\frac{97±\sqrt{193}}{18} when ± is minus. Subtract \sqrt{193} from 97.
x=\frac{\sqrt{193}+97}{18} x=\frac{97-\sqrt{193}}{18}
The equation is now solved.
3\times \frac{\sqrt{193}+97}{18}=16+\sqrt{\frac{\sqrt{193}+97}{18}}
Substitute \frac{\sqrt{193}+97}{18} for x in the equation 3x=16+\sqrt{x}.
\frac{1}{6}\times 193^{\frac{1}{2}}+\frac{97}{6}=\frac{97}{6}+\frac{1}{6}\times 193^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{193}+97}{18} satisfies the equation.
3\times \frac{97-\sqrt{193}}{18}=16+\sqrt{\frac{97-\sqrt{193}}{18}}
Substitute \frac{97-\sqrt{193}}{18} for x in the equation 3x=16+\sqrt{x}.
\frac{97}{6}-\frac{1}{6}\times 193^{\frac{1}{2}}=\frac{95}{6}+\frac{1}{6}\times 193^{\frac{1}{2}}
Simplify. The value x=\frac{97-\sqrt{193}}{18} does not satisfy the equation.
x=\frac{\sqrt{193}+97}{18}
Equation 3x-16=\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}